Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1968 Dec;199(2):347–365. doi: 10.1113/jphysiol.1968.sp008657

Sodium and calcium components of action potentials in Aplysia giant neurone

D Geduldig, D Junge
PMCID: PMC1365384  PMID: 5723516

Abstract

1. Action potentials resulting from direct stimulation can be recorded from the soma of the Aplysia giant neurone (located in the visceral ganglion) in sodium-free and in calcium-free external solutions. The neurones were impaled by internal micro-electrodes throughout the change of external solutions.

2. Complete replacement of either sodium or calcium in the bathing medium with Tris results in only a partial reduction of spike overshoot. Simultaneous replacement of both sodium and calcium reversibly and quickly abolishes the spike.

3. The sodium component of the spike in a calcium-free medium is blocked by tetrodotoxin; the drug has no effect on the calcium-dependent spike in sodium-free medium. Externally applied cobalt chloride blocks only the calcium-dependent component.

4. In calcium-free media, the overshoot value varies with sodium concentration in the manner predicted for a sodium electrode. In sodium-free media, the membrane behaves like a calcium electrode.

5. These results suggest that, during the normal action potential, both sodium and calcium act as carriers of the inward-directed current.

Full text

PDF
347

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABBOTT B. C., PARNAS I. ELECTRICAL AND MECHANICAL RESPONSES IN DEEP ABDOMINAL EXTENSOR MUSCLES OF CRAYFISH AND LOBSTER. J Gen Physiol. 1965 May;48:919–931. doi: 10.1085/jgp.48.5.919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BULBRING E., KURIYAMA H. Effects of changes in the external sodium and calcium concentrations on spontaneous electrical activity in smooth muscle of guinea-pig taenia coli. J Physiol. 1963 Apr;166:29–58. doi: 10.1113/jphysiol.1963.sp007089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benolken R. M., Russell C. J. Tetrodotoxin blocks a graded sensory response in the eye of Limulus. Science. 1967 Mar 24;155(3769):1576–1577. doi: 10.1126/science.155.3769.1576. [DOI] [PubMed] [Google Scholar]
  4. Chamberlain S. G., Kerkut G. A. Voltage clamp studies on snail (Helix aspersa) neurons. Nature. 1967 Oct 7;216(5110):89–89. doi: 10.1038/216089a0. [DOI] [PubMed] [Google Scholar]
  5. Coggeshall R. E., Kandel E. R., Kupfermann I., Waziri R. A morphological and functional study on a cluster of identifiable neurosecretory cells in the abdominal ganglion of aplysia californica. J Cell Biol. 1966 Nov 1;31(2):363–368. doi: 10.1083/jcb.31.2.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. FATT P., GINSBORG B. L. The ionic requirements for the production of action potentials in crustacean muscle fibres. J Physiol. 1958 Aug 6;142(3):516–543. doi: 10.1113/jphysiol.1958.sp006034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. FATT P., KATZ B. The electrical properties of crustacean muscle fibres. J Physiol. 1953 Apr 28;120(1-2):171–204. doi: 10.1113/jphysiol.1953.sp004884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FRANKENHAEUSER B., HODGKIN A. L. The action of calcium on the electrical properties of squid axons. J Physiol. 1957 Jul 11;137(2):218–244. doi: 10.1113/jphysiol.1957.sp005808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. FRANKENHAEUSER B. The effect of calcium on the myelinated nerve fibre. J Physiol. 1957 Jul 11;137(2):245–260. doi: 10.1113/jphysiol.1957.sp005809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. GORDON H. T., WELSH J. H. The role of ions in axon surface reactions to toxic organic compounds. J Cell Physiol. 1948 Jun;31(3):395–419. doi: 10.1002/jcp.1030310311. [DOI] [PubMed] [Google Scholar]
  11. HAGIWARA S., CHICHIBU S., NAKA K. I. THE EFFECTS OF VARIOUS IONS ON RESTING AND SPIKE POTENTIALS OF BARNACLE MUSCLE FIBERS. J Gen Physiol. 1964 Sep;48:163–179. doi: 10.1085/jgp.48.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HAGIWARA S., NAKA K. I. THE INITIATION OF SPIKE POTENTIAL IN BARNACLE MUSCLE FIBERS UNDER LOW INTRACELLULAR CA++. J Gen Physiol. 1964 Sep;48:141–162. doi: 10.1085/jgp.48.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hagiwara S., Nakajima S. Differences in Na and Ca spikes as examined by application of tetrodotoxin, procaine, and manganese ions. J Gen Physiol. 1966 Mar;49(4):793–806. doi: 10.1085/jgp.49.4.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hagiwara S., Takahashi K. Surface density of calcium ions and calcium spikes in the barnacle muscle fiber membrane. J Gen Physiol. 1967 Jan;50(3):583–601. doi: 10.1085/jgp.50.3.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hille B. Common mode of action of three agents that decrease the transient change in sodium permeability in nerves. Nature. 1966 Jun 18;210(5042):1220–1222. doi: 10.1038/2101220a0. [DOI] [PubMed] [Google Scholar]
  17. Junge D. Multi-ionic action potentials in molluscan giant neurones. Nature. 1967 Jul 29;215(5100):546–548. doi: 10.1038/215546a0. [DOI] [PubMed] [Google Scholar]
  18. Kuriyama H., Osa T., Toida N. Effect of tetrodotoxin on smooth muscle cells of the guinea-pig taenia coli. Br J Pharmacol Chemother. 1966 Aug;27(2):366–376. doi: 10.1111/j.1476-5381.1966.tb01668.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. NARAHASHI T., MOORE J. W., SCOTT W. R. TETRODOTOXIN BLOCKAGE OF SODIUM CONDUCTANCE INCREASE IN LOBSTER GIANT AXONS. J Gen Physiol. 1964 May;47:965–974. doi: 10.1085/jgp.47.5.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nakamura Y., Nakajima S., Grundfest H. The action of tetrodotoxin on electrogenic components of squid giant axons. J Gen Physiol. 1965 Jul;48(6):975–996. [PubMed] [Google Scholar]
  21. Niedergerke R., Orkand R. K. The dependence of the action potential of the frog's heart on the external and intracellular sodium concentration. J Physiol. 1966 May;184(2):312–334. doi: 10.1113/jphysiol.1966.sp007917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Niedergerke R., Orkand R. K. The dual effect of calcium on the action potential of the frog's heart. J Physiol. 1966 May;184(2):291–311. doi: 10.1113/jphysiol.1966.sp007916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ozeki M., Freeman A. R., Grundfest H. The membrane components of crustacean neuromuscular systems. I. Immunity of different electrogenic components to tetrodotoxin and saxitoxin. J Gen Physiol. 1966 Jul;49(6):1319–1334. doi: 10.1085/jgp.0491319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Takeda K. Permeability changes associated with the action potential in procaine-treated crayfish abdominal muscle fibers. J Gen Physiol. 1967 Mar;50(4):1049–1074. doi: 10.1085/jgp.50.4.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tasaki I., Singer I. Membrane macromolecules and nerve excitability: a physico-chemical interpretation of excitation in squid giant axons. Ann N Y Acad Sci. 1966 Jul 14;137(2):792–806. doi: 10.1111/j.1749-6632.1966.tb50200.x. [DOI] [PubMed] [Google Scholar]
  26. Watanabe A., Tasaki I., Singer I., Lerman L. Effects of tetrodotoxin on excitability of squid giant axons in sodium-free media. Science. 1967 Jan 6;155(3758):95–97. doi: 10.1126/science.155.3758.95. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES