Abstract
1. The calcium content of human erythrocytes, after removal of the buffy coat and washing free from plasma with isotonic sodium chloride, has been determined by atomic absorption spectrophotometry. The mean value found for normal subjects was 0·634 μg/ml. of packed erythrocytes (0·0158 μg-atom/ml.). The corresponding values for magnesium and zinc were 79·7 and 20·1 μg/ml., respectively.
2. The calcium is considered to be mostly and perhaps exclusively located in the erythrocyte membrane, since, after osmotic haemolysis, the same amount was found in the ghost cells as was present in the erythrocytes from which they were prepared. By contrast, magnesium and zinc, which are essentially intracellular, were lost to the extent of about 96 and 92%, respectively.
3. About 90% of the calcium was removed from erythrocytes by washing with isotonic sodium chloride containing 5 mM ethylenediaminetetraacetate (EDTA), or other complexing agents of high stability constant for calcium. A small fraction of the magnesium but none of the zinc was removed by this treatment.
4. Other complexing agents of lower stability constant removed somewhat less calcium from the erythrocytes. Citrate was totally ineffective.
5. The buffy coat had a high calcium content, but this could not be removed by washing with EDTA.
6. Calcium was also determined in trichloroacetic acid extracts of ghost cells after ashing and treatment with bis-(o-hydroxyphenylimino)-ethane and measuring the red complex spectrophotometrically. The values obtained confirmed the atomic absorption measurements.
Full text
PDF














Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BERGER E. Y. Calcium determination in biologic material. Clin Chem. 1955 Aug;1(4):249–252. [PubMed] [Google Scholar]
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- BOLINGBROKE V., MAIZELS M. Calcium ions and the permeability of human erythrocytes. J Physiol. 1959 Dec;149:563–585. doi: 10.1113/jphysiol.1959.sp006361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dawson R. M. 'Phosphatido-peptide'-like complexes formed by the interaction of calcium triphosphoinositide with protein. Biochem J. 1965 Oct;97(1):134–138. doi: 10.1042/bj0970134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GOSSELIN R. E., COGHLAN E. R. The stability of complexes between calcium and orthophosphate, polymeric phosphate, and phytate. Arch Biochem Biophys. 1953 Aug;45(2):301–311. doi: 10.1016/s0003-9861(53)80007-x. [DOI] [PubMed] [Google Scholar]
- KEITER H. G., BERMAN H., JONES H., MACLACHLAN E. The chemical composition of normal human red blood cells, including variability among centrifuged cells. Blood. 1955 Apr;10(4):370–376. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- VALBERG L. S., HOLT J. M., PAULSON E., SZIVEK J. SPECTROCHEMICAL ANALYSIS OF SODIUM, POTASSIUM, CALCIUM, MAGNESIUM, COPPER, AND ZINC IN NORMAL HUMAN ERYTHROCYTES. J Clin Invest. 1965 Mar;44:379–389. doi: 10.1172/JCI105151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WALLACH S., ZEMP J. W., CAVINS J. A., JENKINS L. J., Jr, BETHEA M., FRESHETTE L., HAYNES L. L., TULLIS J. L. Cation flux and electrolyte composition of frozen-deglycerolized blood. Blood. 1962 Sep;20:344–354. [PubMed] [Google Scholar]
- WEED R. I., REED C. F., BERG G. Is hemoglobin an essential structural component of human erythrocyte membranes? J Clin Invest. 1963 Apr;42:581–588. doi: 10.1172/JCI104747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wieneke A. A., Woodin A. M. The polyphosphoinositide content of the leucocyte, erythrocyte and macrophage. Biochem J. 1967 Dec;105(3):1039–1045. doi: 10.1042/bj1051039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wins P., Schoffeniels E. Studies on red-cell ghost ATPase systems: properties of a (Mg2+ + Ca2+)-dependent ATPase. Biochim Biophys Acta. 1966 Jul 13;120(3):341–350. doi: 10.1016/0926-6585(66)90301-3. [DOI] [PubMed] [Google Scholar]