Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1967 Oct;192(3):715–745. doi: 10.1113/jphysiol.1967.sp008327

The responses of thalamic neurones to iontophoretically applied monoamines

J W Phillis, A K Tebēcis
PMCID: PMC1365538  PMID: 4293789

Abstract

1. The effects of noradrenaline (NA), adrenaline, dopamine (DA) 5-hydroxytryptamine (5-HT) and a number of related drugs were tested on the extracellularly recorded responses of neurones in the feline thalamus. Substances were applied iontophoretically and tested on synaptically, antidromically and chemically evoked neuronal activity.

2. NA, adrenaline, isoprenaline and 5-HT had a variety of effects, depressing some cells, exciting others and not affecting the responses of a third group. DA depressed most of the cells tested; excitation was not observed with this compound.

3. The magnitude of depressant actions and their duration varied considerably. The more sensitive cells responded to extremely small amounts of catecholamine or 5-HT and recovery often took several minutes. Recovery after DA was always rapid. Neurones in the dorsal thalamus were generally more susceptible to depression than those in the ventro-basal complex.

4. Excitatory responses were most marked in the ventro-basal complex of the thalamus. Desensitization occurred if NA or adrenaline was applied repeatedly and this tachyphylaxis lasted for several minutes. After desensitization to the excitatory effects, some of these cells were depressed by catecholamines. These findings suggest the presence of at least two types of membrane receptor.

5. β-adrenergic antagonists (alderlin, D-INPEA and MJ 1999) and α-antagonists (phentolamine, dibenzyline and chlorpromazine) had pronounced depressant actions on some thalamic neurones. With the exceptions of D-INPEA and MJ 1999 they also excited cells that were excited by the catecholamines. Alderlin and phentolamine had both excitatory and inhibitory effects on some cells.

6. The monoamine oxidase inhibitor, iproniazid, depressed neurones which were sensitive to NA depression. It did not appear to potentiate the effects of NA on most of the cells tested.

7. Reticular formation stimulation depressed some neurones in the thalamus and excited others. The depressant effects of NA and reticular formation stimulation were reduced or abolished by an intravenous injection of picrotoxin (1 mg/kg).

8. It is suggested that NA and 5-HT may be inhibitory transmitters in the thalamus, released at the terminals of ascending pathways from the brain stem that have been defined by fluorescence microscopy. The excitatory actions of these compounds may also be related to a synaptic role.

Full text

PDF
715

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSEN P., CURTIS D. R. THE PHARMACOLOGY OF THE SYNAPTIC AND ACETYLCHOLINE-INDUCED EXCITATION OF VENTROBASAL THALAMIC NEURONES. Acta Physiol Scand. 1964 May-Jun;61:100–120. doi: 10.1111/j.1748-1716.1964.tb02946.x. [DOI] [PubMed] [Google Scholar]
  2. ANDERSEN P., ECCLES J. C., LOYNING Y., VOORHOEVE P. E. STRYCHNINE-RESISTANT INHIBITION IN THE BRAIN. Nature. 1963 Nov 30;200:843–845. doi: 10.1038/200843a0. [DOI] [PubMed] [Google Scholar]
  3. ANDERSEN P., ECCLES J. C., SEARS T. A. THE VENTRO-BASAL COMPLEX OF THE THALAMUS: TYPES OF CELLS, THEIR RESPONSES AND THEIR FUNCTIONAL ORGANIZATION. J Physiol. 1964 Nov;174:370–399. doi: 10.1113/jphysiol.1964.sp007493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Almirante L., Murmann W. Relationship between configuration and adrenergic beta-receptor blocking activity of optical isomers of 1-(4-nitrophenyl)-2-isopropylaminoethanol (INPEA). J Med Chem. 1966 Sep;9(5):650–653. doi: 10.1021/jm00323a002. [DOI] [PubMed] [Google Scholar]
  5. BERTLER A., ROSENGREN E. Occurrence and distribution of catechol amines in brain. Acta Physiol Scand. 1959 Dec 12;47:350–361. [PubMed] [Google Scholar]
  6. BOGDANSKI D. F., WEISSBACH H., UDENFRIEND S. The distribution of serotonin, 5-hydroxytryptophan decarboxylase, and monoamine oxidase in brain. J Neurochem. 1957;1(3):272–278. doi: 10.1111/j.1471-4159.1957.tb12082.x. [DOI] [PubMed] [Google Scholar]
  7. Biscoe T. J., Curtis D. R. Noradrenaline and inhibition of Renshaw cells. Science. 1966 Mar 11;151(3715):1230–1231. doi: 10.1126/science.151.3715.1230. [DOI] [PubMed] [Google Scholar]
  8. Biscoe T. J., Curtis D. R., Ryall R. W. An investigation of catecholamine receptors of spinal interneurones. Int J Neuropharmacol. 1966 Nov;5(6):429–434. doi: 10.1016/0028-3908(66)90008-6. [DOI] [PubMed] [Google Scholar]
  9. CRAWFORD J. M., CURTIS D. R., VOORHOEVE P. E., WILSON V. J. STRYCHNINE AND CORTICAL INHIBITION. Nature. 1963 Nov 30;200:845–846. doi: 10.1038/200845a0. [DOI] [PubMed] [Google Scholar]
  10. CURTIS D. R., DAVIS R. Pharmacological studies upon neurones of the lateral geniculate nucleus of the cat. Br J Pharmacol Chemother. 1962 Apr;18:217–246. doi: 10.1111/j.1476-5381.1962.tb01404.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. CURTIS D. R. The pharmacology of central and peripheral inhibition. Pharmacol Rev. 1963 Jun;15:333–364. [PubMed] [Google Scholar]
  12. DI CARLO V. [Research on the mechanism of action of local anesthetics]. Arch Ital Sci Farmacol. 1961 Jan;11:3–12. [PubMed] [Google Scholar]
  13. De Groat W. C., Volle R. L. The actions of the catecholamines on transmission in the superior cervical ganglion of the cat. J Pharmacol Exp Ther. 1966 Oct;154(1):1–13. [PubMed] [Google Scholar]
  14. ECCLES J. C., SCHMIDT R., WILLIS W. D. PHARMACOLOGICAL STUDIES ON PRESYNAPTIC INHIBITION. J Physiol. 1963 Oct;168:500–530. doi: 10.1113/jphysiol.1963.sp007205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Engberg I., Ryall R. W. The inhibitory action of noradrenaline and other monoamines on spinal neurones. J Physiol. 1966 Jul;185(2):298–322. doi: 10.1113/jphysiol.1966.sp007988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. FUXE K. EVIDENCE FOR THE EXISTENCE OF MONOAMINE NEURONS IN THE CENTRAL NERVOUS SYSTEM. 3. THE MONOAMINE NERVE TERMINAL. Z Zellforsch Mikrosk Anat. 1965 Feb 9;65:573–596. [PubMed] [Google Scholar]
  17. GILL E. W., WILLIAMS E. M. LOCAL ANAESTHETIC ACTIVITY OF THE BETA-RECEPTOR ANTAGONIST, PRONETHALOL. Nature. 1964 Jan 11;201:199–199. doi: 10.1038/201199a0. [DOI] [PubMed] [Google Scholar]
  18. GRUNDFEST H., REUBEN J. P., RICKLES W. H., Jr The electrophysiology and pharmacology of lobster neuromuscular synapses. J Gen Physiol. 1959 Jul 20;42(6):1301–1323. doi: 10.1085/jgp.42.6.1301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Glowinski J., Iversen L. L. Regional studies of catecholamines in the rat brain. I. The disposition of [3H]norepinephrine, [3H]dopamine and [3H]dopa in various regions of the brain. J Neurochem. 1966 Aug;13(8):655–669. doi: 10.1111/j.1471-4159.1966.tb09873.x. [DOI] [PubMed] [Google Scholar]
  20. HARVEY J. A., HELLER A., MOORE R. Y. The effect of unilateral and bilateral medial forebrain bundle lesions on brain serotonin. J Pharmacol Exp Ther. 1963 Apr;140:103–110. [PubMed] [Google Scholar]
  21. Heller A., Seiden L. S., Moore R. Y. Regional effects of lateral hypothalamic lesions on brain norepinephrine in the cat. Int J Neuropharmacol. 1966 Jan;5(1):91–101. doi: 10.1016/0028-3908(66)90054-2. [DOI] [PubMed] [Google Scholar]
  22. KELLETT R. C., PHILLIS J. W., VEALE J. L. A SPIKE INTENSIFIER AND SINGLE TRIGGER GENERATOR FOR IDENTIFICATION OF VENTRAL ROOT AXONS. Electroencephalogr Clin Neurophysiol. 1965 Jan;18:82–84. doi: 10.1016/0013-4694(65)90150-1. [DOI] [PubMed] [Google Scholar]
  23. KRNJEVIC K., PHILLIS J. W. Acetylcholine-sensitive cells in the cerebral cortex. J Physiol. 1963 Apr;166:296–327. doi: 10.1113/jphysiol.1963.sp007106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. KRNJEVIC K., PHILLIS J. W. Actions of certain amines on cerebral cortical neurones. Br J Pharmacol Chemother. 1963 Jun;20:471–490. doi: 10.1111/j.1476-5381.1963.tb01484.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. KRNJEVIC K., PHILLIS J. W. Iontophoretic studies of neurones in the mammalian cerebral cortex. J Physiol. 1963 Feb;165:274–304. doi: 10.1113/jphysiol.1963.sp007057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kellerth J. O., Szumski A. J. Effects of picrotoxin on stretch-activated post-synaptic inhibitions in spinal motoneurones. Acta Physiol Scand. 1966 Jan-Feb;66(1):146–156. doi: 10.1111/j.1748-1716.1966.tb03179.x. [DOI] [PubMed] [Google Scholar]
  27. Krnjević K., Phillis J. W. Pharmacological properties of acetylcholine-sensitive cells in the cerebral cortex. J Physiol. 1963 May;166(2):328–350. doi: 10.1113/jphysiol.1963.sp007107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. LOCKARD I., REERS B. L. Staining tissue of the central nervous system with luxol fast blue and neutral red. Stain Technol. 1962 Jan;37:13–16. doi: 10.3109/10520296209114562. [DOI] [PubMed] [Google Scholar]
  29. Lish P. M., Weikel J. H., Dungan K. W. Pharmacological and toxicological properties of two new beta-adrenergic receptor antagonists. J Pharmacol Exp Ther. 1965 Aug;149(2):161–173. [PubMed] [Google Scholar]
  30. MCCANCE I., PHILLIS J. W. DISCHARGE PATTERNS OF ELEMENTS IN CAT CEREBELLAR CORTEX, AND THEIR RESPONSES TO IONTOPHORETICALLY APPLIED DRUGS. Nature. 1964 Nov 28;204:844–846. doi: 10.1038/204844a0. [DOI] [PubMed] [Google Scholar]
  31. MCCANCE I., PHILLIS J. W. THE LOCATION OF MICROELECTRODE TIPS IN NERVOUS TISSUES. Experientia. 1965 Feb 15;21:108–109. doi: 10.1007/BF02144771. [DOI] [PubMed] [Google Scholar]
  32. McCance I., Phillis J. W., Westerman R. A. Responses of thalamic neurones to iontophoretically applied drugs. Nature. 1966 Feb 12;209(5024):715–716. doi: 10.1038/209715a0. [DOI] [PubMed] [Google Scholar]
  33. Moore R. Y., Wong S. L., Heller A. Regional effects of hypothalamic lesions on brain serotonin. Arch Neurol. 1965 Oct;13(4):346–354. doi: 10.1001/archneur.1965.00470040012002. [DOI] [PubMed] [Google Scholar]
  34. Murmann W., Saccani-Guelfi M., Gamba A. Pharmacological properties of 1-(4'-nitrophenyl)-2-isopropylamino-ethanol (INPEA), a new beta-adrenergic receptor antagonist. II. Studies of local anesthetic activity. Boll Chim Farm. 1966 Apr;105(4):292–300. [PubMed] [Google Scholar]
  35. Phillis J. W., Tebecis A. K., York D. H. A study of cholinoceptive cells in the lateral geniculate nucleus. J Physiol. 1967 Oct;192(3):695–713. doi: 10.1113/jphysiol.1967.sp008326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Phillis J. W., Tebècis A. K., York D. H. The inhibitory action of monoamines on lateral geniculate neurones. J Physiol. 1967 Jun;190(3):563–581. doi: 10.1113/jphysiol.1967.sp008228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. ROBBINS J. The excitation and inhibition of crustacean muscle by amino acids. J Physiol. 1959 Oct;148:39–50. doi: 10.1113/jphysiol.1959.sp006272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. ROBBINS J., VAN DER KLOOT W. G. The effect of picrotoxin on peripheral inhibition in the crayfish. J Physiol. 1958 Oct 31;143(3):541–552. doi: 10.1113/jphysiol.1958.sp006076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. ROTHBALLER A. B. The effects of catecholamines on the central nervous system. Pharmacol Rev. 1959 Jun;11(2 Pt 2):494–547. [PubMed] [Google Scholar]
  40. SHUTE C. C., LEWIS P. R. CHOLINESTERASE-CONTAINING SYSTEMS OF THE BRAIN OF THE RAT. Nature. 1963 Sep 21;199:1160–1164. doi: 10.1038/1991160a0. [DOI] [PubMed] [Google Scholar]
  41. UMRATH K. Der fermentative Abbau der Erregungssubstanz der sensiblen Nerven, seine pH-Abhängigkeit und seine Hemmung durch zentral erregende Stoffe. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1953;219(1-2):148–155. [PubMed] [Google Scholar]
  42. USHERWOOD P. N., GRUNDFEST H. INHIBITORY POSTSYNAPTIC POTENTIALS IN GRASSHOPPER MUSCLE. Science. 1964 Feb 21;143(3608):817–818. doi: 10.1126/science.143.3608.817. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES