Abstract
1. Conditions are defined which determine the level of catch after acetylcholine stimulation of Mytilus muscle.
2. Catch tension in dissected muscle is absent when connexions with ganglia are intact.
3. Catch tension is absent at temperatures above 30° C.
4. Catch tension decreases when intervals between stimuli are increased.
5. Increasing concentrations of 5-hydroxytryptamine (5-HT) from 10-8M to 10-6M quantitatively decreases catch tension.
6. The length—tension curve of ganglion-free Mytilus muscle bundles suggests that catch tension varies in proportion to the tension developed in contraction.
7. External Ca2+ concentration has no selective influence on catch.
8. All factors which reduce catch also increase muscle excitability, suggesting that catch may depend on a mechanism controlling the intracellular concentration of an activator such as Ca2+.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BOWDEN J., LOWY J. Innervation. Nature. 1955 Aug 20;176(4477):346–347. doi: 10.1038/176346a0. [DOI] [PubMed] [Google Scholar]
- Cohen C., Longley W. Tropomyosin paracrystals formed by divalent cations. Science. 1966 May 6;152(3723):794–796. doi: 10.1126/science.152.3723.794. [DOI] [PubMed] [Google Scholar]
- Hagiwara S., Nakajima S. Effects of the intracellular Ca ion concentration upon the excitability of the muscle fiber membrane of a barnacle. J Gen Physiol. 1966 Mar;49(4):807–818. doi: 10.1085/jgp.49.4.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hidaka T., Osa T., Twarog B. M. The action of 5-hydroxytryptamine on Mytilus smooth muscle. J Physiol. 1967 Oct;192(3):869–877. doi: 10.1113/jphysiol.1967.sp008337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JEWELL B. R. The nature of the phasic and the tonic responses of the anterior byssal retractor muscle of Mytilus. J Physiol. 1959 Dec;149:154–177. doi: 10.1113/jphysiol.1959.sp006332. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JOHNSON W. H., TWAROG B. M. The basis for prolonged contractions in molluscan muscles. J Gen Physiol. 1960 May;43:941–960. doi: 10.1085/jgp.43.5.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JOHNSON W. H. Tonic mechanisms in smooth muscles. Physiol Rev Suppl. 1962 Jul;5:113–159. [PubMed] [Google Scholar]
- LOWY J., MILLMAN B. M., HANSON J. STRUCTURE AND FUNCTION IN SMOOTH TONIC MUSCLES OF LAMELLIBRANCH MOLLUSCS. Proc R Soc Lond B Biol Sci. 1964 Oct 27;160:525–536. doi: 10.1098/rspb.1964.0068. [DOI] [PubMed] [Google Scholar]
- MILLMAN B. M. CONTRACTION IN THE OPAQUE PART OF THE ADDUCTOR MUSCLE OF THE OYSTER (CRASSOSTREA ANGULATA). J Physiol. 1964 Sep;173:238–262. doi: 10.1113/jphysiol.1964.sp007455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PAUSCHINGER P., BRECHT K. Influence of calcium on the potassium-contracture of 'slow' and 'fast' skeletal muscle fibres of the frog. Nature. 1961 Feb 18;189:583–584. doi: 10.1038/189583a0. [DOI] [PubMed] [Google Scholar]
- TWAROG B. M. Innervation and activity of a molluscan smooth muscle. J Physiol. 1960 Jul;152:220–235. doi: 10.1113/jphysiol.1960.sp006483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TWAROG B. M. Responses of a molluscan smooth muscle to acetylcholine and 5-hydroxytryptamine. J Cell Physiol. 1954 Aug;44(1):141–163. doi: 10.1002/jcp.1030440112. [DOI] [PubMed] [Google Scholar]
- Twarog B. M. Catch and the mechanism of action of 5-hydroxytryptamine on molluscan muscle: a speculation. Life Sci. 1966 Jul;5(13):1201–1213. doi: 10.1016/0024-3205(66)90042-7. [DOI] [PubMed] [Google Scholar]
- Twarog B. M. Excitation of Mytilus smooth muscle. J Physiol. 1967 Oct;192(3):857–868. doi: 10.1113/jphysiol.1967.sp008336. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WELSH J. H., MOORHEAD M. The quantitative distribution of 5-hydroxytryptamine in the invertebrates, especially in their nervous systems. J Neurochem. 1960 Sep;6:146–169. doi: 10.1111/j.1471-4159.1960.tb13460.x. [DOI] [PubMed] [Google Scholar]