Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1967 Sep;192(2):257–281. doi: 10.1113/jphysiol.1967.sp008299

Some factors involved in the thalamic control of spontaneous barbiturate spindles

P Andersen, S A Andersson, T Lømo
PMCID: PMC1365556  PMID: 6050147

Abstract

1. The origin of thalamic and cortical spontaneous spindles was studied in cats anaesthetized with sodium pentobarbital.

2. Complete removal of all cortical grey matter left the thalamic rhythmic spindle activity unchanged.

3. Removal of the entire thalamus or pronounced oedema in the thalamus abolished completely the spindle activity in the corresponding hemisphere.

4. In a neuronally isolated cortical area, a fast, low voltage background activity appeared, interrupted by occasional irregular rapid potential changes (sharp waves) of high voltage. Regular spindle rhythms were seldom observed unless excited by a depolarizing drug. Spontaneous spindles did not invade the isolated cortex via a bridge of intact cortical tissue.

5. With increasingly larger destruction of the thalamus in a rostro-caudal direction, the activity in the post-cruciate cortex did not change until the anterior third of the thalamus was encroached upon. A transverse section in front of the thalamus nearly eliminated the cortical spindles.

6. Complete removal of the mid line and intralaminar nuclei left the spontaneous rhythmic activity of the lateral thalamic nuclei and of the frontal cortex principally unchanged.

7. Removal of the laterally located thalamic nuclei, including the n. ventralis posterolateralis (VPL), abolished virtually all spontaneous spindle activity of the frontal cortex, including the post-cruciate area.

8. Local cortical cooling reduced the amplitude but not the frequency of the cortical spindles.

9. Cooling of the whole brain reduced both the amplitude and the frequency of the spindles. At low temperatures, all spindle activity in the cortex disappeared, and occasional sharp waves occurred, as with de-afferentation.

10. It is concluded that the rhythm of the cortical spontaneous barbiturate spindles is generated exclusively by thalamic neurones. The electromotive force of the corticographic waves, however, has a cortical origin.

Full text

PDF
257

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AJMONE-MARSAN C., RALSTON B. Thalamic control of certain normal and abnormal cortical rhythms. Electroencephalogr Clin Neurophysiol. 1956 Nov;8(4):559–582. doi: 10.1016/0013-4694(56)90082-7. [DOI] [PubMed] [Google Scholar]
  2. ANDERSEN P., ECCLES J. Inhibitory phasing of neuronal discharge. Nature. 1962 Nov 17;196:645–647. doi: 10.1038/196645a0. [DOI] [PubMed] [Google Scholar]
  3. ANDERSEN P., SEARS T. A. THE ROLE OF INHIBITION IN THE PHASING OF SPONTANEOUS THALAMO-CORTICAL DISCHARGE. J Physiol. 1964 Oct;173:459–480. doi: 10.1113/jphysiol.1964.sp007468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. ARDUINI A., TERZUOLO C. Cortical and subcortical components in the recruiting responses. Electroencephalogr Clin Neurophysiol. 1951 May;3(2):189–196. doi: 10.1016/0013-4694(51)90010-7. [DOI] [PubMed] [Google Scholar]
  5. ASANUMA H., BROOKS V. B. RECURRENT CORTICAL EFFECTS FOLLOWING STIMULATION OF INTERNAL CAPSULE. Arch Ital Biol. 1965 Jun 10;103:220–246. [PubMed] [Google Scholar]
  6. Andersen P., Andersson S. A., Lomo T. Nature of thalamo-cortical relations during spontaneous barbiturate spindle activity. J Physiol. 1967 Sep;192(2):283–307. doi: 10.1113/jphysiol.1967.sp008300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. BISHOP G. H., CLARE M. H. Potential wave mechanisms in cat cortex. Electroencephalogr Clin Neurophysiol. 1956 Nov;8(4):583–602. doi: 10.1016/0013-4694(56)90083-9. [DOI] [PubMed] [Google Scholar]
  8. BRAZIER M. A. B., CASBY J. U. Cross-correlation and autocorrelation studies of electroencephalographic potentials. Electroencephalogr Clin Neurophysiol. 1952 May;4(2):201–211. doi: 10.1016/0013-4694(52)90010-2. [DOI] [PubMed] [Google Scholar]
  9. BREMER F. Cerebral and cerebellar potentials. Physiol Rev. 1958 Jul;38(3):357–388. doi: 10.1152/physrev.1958.38.3.357. [DOI] [PubMed] [Google Scholar]
  10. BREMER F., STOUPEL N. Etude des mécanismes de la synergie bioélectrique des hémisphères cérébraux. Acta Physiol Pharmacol Neerl. 1957;6:487–496. [PubMed] [Google Scholar]
  11. Burns B. D. Some properties of the cat's isolated cerebral cortex. J Physiol. 1950 Apr 15;111(1-2):50–68. doi: 10.1113/jphysiol.1950.sp004463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. ECHLIN F. A., ARNETT V., ZOLL J. Paroxysmal high voltage discharges from isolated and partially isolated human and animal cerebral cortex. Electroencephalogr Clin Neurophysiol. 1952 May;4(2):147–164. doi: 10.1016/0013-4694(52)90004-7. [DOI] [PubMed] [Google Scholar]
  13. GAENSHIRT H., KRENKEL W., ZYLKA W. The electrocorticogram of the cat's brain at temperatures between 40 degrees C. and 20 degrees C. Electroencephalogr Clin Neurophysiol. 1954 Aug;6(3):409–413. doi: 10.1016/0013-4694(54)90055-3. [DOI] [PubMed] [Google Scholar]
  14. GALAMBOS R., ROSE J. E., BROMILEY R. B., HUGHES J. R. Microelectrode studies on medial geniculate body of cat. II. Response to clicks. J Neurophysiol. 1952 Sep;15(5):359–380. doi: 10.1152/jn.1952.15.5.359. [DOI] [PubMed] [Google Scholar]
  15. GIDLOEF A., SOEDERBERG U. THE ACTIVITY OF THE CATS NEURONALLY ISOLATED CEREBRAL CORTEX BETWEEN 25 DEGREES AND 40 DEGREES C. Electroencephalogr Clin Neurophysiol. 1964 Nov;17:531–539. doi: 10.1016/0013-4694(64)90184-1. [DOI] [PubMed] [Google Scholar]
  16. HSIANG-TUNG CHANG The repetitive discharges of corticothalamic reverberating circuit. J Neurophysiol. 1950 May;13(3):235–257. doi: 10.1152/jn.1950.13.3.235. [DOI] [PubMed] [Google Scholar]
  17. INGVAR D. H. Electrical activity of isolated cortex in the unanesthetized cat with intact brain stem. Acta Physiol Scand. 1955;33(2-3):151–168. doi: 10.1111/j.1748-1716.1955.tb01201.x. [DOI] [PubMed] [Google Scholar]
  18. JASPER H. H., AJMONE-MARSAN C. Thalamocortical integrating mechanisms. Res Publ Assoc Res Nerv Ment Dis. 1952;30:493–512. [PubMed] [Google Scholar]
  19. Kellaway P., Gol A., Proler M. Electrical activity of the isolated cerebral hemisphere and isolated thalamus. Exp Neurol. 1966 Mar;14(3):281–304. doi: 10.1016/0014-4886(66)90115-4. [DOI] [PubMed] [Google Scholar]
  20. Thomas R. C., Wilson V. J. Precise localization of Renshaw cells with a new marking technique. Nature. 1965 Apr 10;206(980):211–213. doi: 10.1038/206211b0. [DOI] [PubMed] [Google Scholar]
  21. VERZEANO M., NAQUET R., KING E. E. Action of barbiturates and convulsants on unit activity of diffusely projecting nuclei of thalamus. J Neurophysiol. 1955 Sep;18(5):502–512. doi: 10.1152/jn.1955.18.5.502. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES