Abstract
1. 5-Hydroxytryptamine (5-HT) and various 5-HT antagonists have been applied micro-electrophoretically from multibarrelled micropipettes into the environment of single neurones in the post-sigmoid and suprasylvian gyri of the cat cerebral cortex.
2. In unanaesthetized animals (encéphale isolé) a high proportion of neurones (30%) were excited by 5-HT. This excitation usually had a rapid onset and was seen both in spontaneously active neurones and in otherwise quiescent neurones in which firing was induced by L-glutamate. Some neurones were so sensitive that the uncontrolled diffusion from micropipettes was sufficient to excite them. More cells were excited by 5-HT applied as a cation from solutions of the bimaleate salt than when solutions of the creatinine sulphate salt were used.
3. In a high proportion of cells (33%) spontaneous firing or amino acid excitation was depressed by 5-HT.
4. A mixed effect was seen in a small proportion (6%) of the cells tested; usually 5-HT caused an excitation initially which was followed by a depression. In other cells, desensitization occurred, and the excitatory effect of 5-HT was diminished or lost.
5. When glutamate was used to excite otherwise quiescent cells, there was a significant increase in the number of cells excited by 5-HT and a significant decrease in the number of cells unaffected compared with spontaneously active cells.
6. The micro-electrophoretic application of D-lysergic diethylamide (LSD 25), 2-brom LSD (BOL 148), methysergide (UML 491), or 2′- (3-dimethylaminopropylthio)cinnamanilide (SQ 10643) temporarily prevented excitation by 5-HT in half the cells tested. LSD and SQ 10643 were particularly potent in this respect. This antagonism of 5-HT excitation could still be seen when excitation of the cell by L-glutamate or acetylcholine (ACh) was unaffected.
7. The depression induced by 5-HT was not prevented by the application of known 5-HT antagonists in the majority of the cells tested (93%). In two cells, however, the depression was reversibly prevented by these antagonists.
8. Some cells tested with 5-HT were also tested with ACh or (—)-noradrenaline. The response of a cell to ACh was not significantly related to its response to 5-HT. The degree of correlation between the responses to noradrenaline and 5-HT was large, but not statistically significant with the small number of cells studied.
9. The effects of 5-HT on cells in animals anaesthetized with α-chloralose did not differ significantly from its effects in unanaesthetized preparations. It is suggested that the use of this anaesthetic may prove a useful alternative to unanaesthetized preparations.
10. The systemic injection of small quantities of thiopentone sodium selectively and reversibly reduced the sensitivity of some units to excitation by 5-HT at a time when the response to glutamate was unaffected. On other occasions, the 5-HT excitation was unaffected, though the response to glutamate was reduced.
11. These results are discussed in relation to the possible nature of the 5-HT receptors in the cerebral cortex, and the interfering effects of anaesthesia on the response of brain cells to potential transmitter substances.
Full text
PDF

























Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ANDEN N. E., CARLSSON A., HILLARP N. A., MAGNUSSON T. 5-HYDROXYTRYPTAMINE RELEASE BY NERVE STIMULATION OF THE SPINAL CORD. Life Sci. 1964 May;3:473–478. doi: 10.1016/0024-3205(64)90208-5. [DOI] [PubMed] [Google Scholar]
- BLOOM F. E., COSTA E., SALMOIRAGHI G. C. ANALYSIS OF INDIVIDUAL RABBIT OLFACTORY BULB NEURON RESPONSES TO THE MICROELECTROPHORESIS OF ACETYLCHOLINE, NOREPINEPHRINE AND SEROTONIN SYNERGISTS AND ANTAGONISTS. J Pharmacol Exp Ther. 1964 Oct;146:16–23. [PubMed] [Google Scholar]
- BOGDANSKI D. F., WEISSBACH H., UDENFRIEND S. The distribution of serotonin, 5-hydroxytryptophan decarboxylase, and monoamine oxidase in brain. J Neurochem. 1957;1(3):272–278. doi: 10.1111/j.1471-4159.1957.tb12082.x. [DOI] [PubMed] [Google Scholar]
- BORN G. V. The fate of 5-hydroxytryptamine in a smooth muscle and in connective tissue. J Physiol. 1962 Apr;161:160–174. doi: 10.1113/jphysiol.1962.sp006879. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BRADLEY P. B., ELKES J. The effects of some drugs on the electrical activity of the brain. Brain. 1957 Mar;80(1):77–117. doi: 10.1093/brain/80.1.77. [DOI] [PubMed] [Google Scholar]
- BRADLEY P. B., WOLSTENCROFT J. H. ACTIONS OF DRUGS ON SINGLE NEURONES IN THE BRAIN-STEM. Br Med Bull. 1965 Jan;21:15–18. doi: 10.1093/oxfordjournals.bmb.a070349. [DOI] [PubMed] [Google Scholar]
- Biscoe T. J., Straughan D. W. Micro-electrophoretic studies of neurones in the cat hippocampus. J Physiol. 1966 Mar;183(2):341–359. doi: 10.1113/jphysiol.1966.sp007869. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CURTIS D. R. Action of 3-hydroxytyramine and some tryptamine derivatives on spinal neurones. Nature. 1962 Apr 21;194:292–292. doi: 10.1038/194292a0. [DOI] [PubMed] [Google Scholar]
- CURTIS D. R., KOIZUMI K. Chemical transmitter substances in brain stem of cat. J Neurophysiol. 1961 Jan;24:80–90. doi: 10.1152/jn.1961.24.1.80. [DOI] [PubMed] [Google Scholar]
- CURTIS D. R., PHILLIS J. W., WATKINS J. C. Cholinergic and non-cholinergic transmission in the mammalian spinal cord. J Physiol. 1961 Sep;158:296–323. doi: 10.1113/jphysiol.1961.sp006770. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crawford J. M., Curtis D. R. Pharmacological studies on feline Betz cells. J Physiol. 1966 Sep;186(1):121–138. doi: 10.1113/jphysiol.1966.sp008024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Curtis D. R., Ryall R. W. The acetylcholine receptors of Renshaw cells. Exp Brain Res. 1966;2(1):66–80. doi: 10.1007/BF00234361. [DOI] [PubMed] [Google Scholar]
- Curtis D. R., Ryall R. W. The excitation of Renshaw cells by cholinomimetics. Exp Brain Res. 1966;2(1):49–65. doi: 10.1007/BF00234360. [DOI] [PubMed] [Google Scholar]
- Dahlström A., Fuxe K., Olson L., Ungerstedt U. On the distribution and possible function of monamine nerve terminals in the olfactory bulb of the rabbit. Life Sci. 1965 Nov;4(21):2071–2074. doi: 10.1016/0024-3205(65)90324-3. [DOI] [PubMed] [Google Scholar]
- Engberg I., Ryall R. W. The inhibitory action of noradrenaline and other monoamines on spinal neurones. J Physiol. 1966 Jul;185(2):298–322. doi: 10.1113/jphysiol.1966.sp007988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FUXE K. EVIDENCE FOR THE EXISTENCE OF MONOAMINE NEURONS IN THE CENTRAL NERVOUS SYSTEM. IV. DISTRIBUTION OF MONOAMINE NERVE TERMINALS IN THE CENTRAL NERVOUS SYSTEM. Acta Physiol Scand Suppl. 1965:SUPPL 247–247:37+. [PubMed] [Google Scholar]
- GADDUM J. H., PICARELLI Z. P. Two kinds of tryptamine receptor. Br J Pharmacol Chemother. 1957 Sep;12(3):323–328. doi: 10.1111/j.1476-5381.1957.tb00142.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GADDUM J. H., VOGT M. Some central actions of 5-hydroxytryptamine and various antagonists. Br J Pharmacol Chemother. 1956 Jun;11(2):175–179. doi: 10.1111/j.1476-5381.1956.tb01049.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerschenfeld H. M., Stefani E. An electrophysiological study of 5-hydroxytryptamine receptors of neurones in the molluscan nervous system. J Physiol. 1966 Aug;185(3):684–700. doi: 10.1113/jphysiol.1966.sp008010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- INNES I. R. An action of 5-hydroxytryptamine on adrenaline receptors. Br J Pharmacol Chemother. 1962 Dec;19:427–441. doi: 10.1111/j.1476-5381.1962.tb01447.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KATZ B., THESLEFF S. A study of the desensitization produced by acetylcholine at the motor end-plate. J Physiol. 1957 Aug 29;138(1):63–80. doi: 10.1113/jphysiol.1957.sp005838. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KRNJEVIC K., MITCHELL J. F., SZERB J. C. Determination of iontophoretic release of acetylcholine from micropipettes. J Physiol. 1963 Mar;165:421–436. doi: 10.1113/jphysiol.1963.sp007067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KRNJEVIC K., PHILLIS J. W. Acetylcholine-sensitive cells in the cerebral cortex. J Physiol. 1963 Apr;166:296–327. doi: 10.1113/jphysiol.1963.sp007106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KRNJEVIC K., PHILLIS J. W. Actions of certain amines on cerebral cortical neurones. Br J Pharmacol Chemother. 1963 Jun;20:471–490. doi: 10.1111/j.1476-5381.1963.tb01484.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KRNJEVIC K., PHILLIS J. W. Iontophoretic studies of neurones in the mammalian cerebral cortex. J Physiol. 1963 Feb;165:274–304. doi: 10.1113/jphysiol.1963.sp007057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KUNTZMAN R., SHORE P. A., BOGDANSKI D., BRODIE B. B. Microanalytical procedures for fluorometric assay of brain DOPA-5HTP decarboxylase, norepinephrine and serotonin, and a detailed mapping of decarboxylase activity in brain. J Neurochem. 1961 Feb;6:226–232. doi: 10.1111/j.1471-4159.1961.tb13469.x. [DOI] [PubMed] [Google Scholar]
- Koella W. P., Czicman J. Mechanism of the EEG-synchronizing action of serotonin. Am J Physiol. 1966 Oct;211(4):926–934. doi: 10.1152/ajplegacy.1966.211.4.926. [DOI] [PubMed] [Google Scholar]
- Legge K. F., Randic M., Straughan D. W. The pharmacology of neurones in the pyriform cortex. Br J Pharmacol Chemother. 1966 Jan;26(1):87–107. doi: 10.1111/j.1476-5381.1966.tb01814.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MICHAELSON I. A., WHITTAKER V. P. The subcellular localization of 5-hydroxytryptamine in guinea pig brain. Biochem Pharmacol. 1963 Feb;12:203–211. doi: 10.1016/0006-2952(63)90185-0. [DOI] [PubMed] [Google Scholar]
- RUBIN B., PIALA J. J., BURKE J. C., CRAVER B. N. A NEW, POTENT AND SPECIFIC SEROTONIN INHIBITOR, (SQ 10,643) 2'-(3-DIMETHYLAMINOPROPYLTHIO) CINNAMANILIDE HYDROCHLORIDE: ANTISEROTONIN ACTIVITY ON UTERUS AND ON GASTROINTESTINAL, VASCULAR, AND RESPIRATORY SYSTEMS OF ANIMALS. Arch Int Pharmacodyn Ther. 1964 Nov 1;152:132–143. [PubMed] [Google Scholar]
- Roberts M. H., Straughan D. W. An excitatory effect of 5-hydroxytryptamine on single cerebral cortical neurones. J Physiol. 1967 Jan;188(2):27P–28P. [PubMed] [Google Scholar]
- SALMOIRAGHI G. C., BLOOM F. E., COSTA E. ADRENERGIC MECHANISMS IN RABBIT OLFACTORY BULB. Am J Physiol. 1964 Dec;207:1417–1424. doi: 10.1152/ajplegacy.1964.207.6.1417. [DOI] [PubMed] [Google Scholar]
- SALMOIRAGHI G. C., COSTA E., BLOOM F. E. PHARMACOLOGY OF CENTRAL SYNAPSES. Annu Rev Pharmacol. 1965;5:213–234. doi: 10.1146/annurev.pa.05.040165.001241. [DOI] [PubMed] [Google Scholar]
- TAKEUCHI A., TAKEUCHI N. THE EFFECT ON CRAYFISH MUSCLE OF IONTOPHORETICALLY APPLIED GLUTAMATE. J Physiol. 1964 Mar;170:296–317. doi: 10.1113/jphysiol.1964.sp007332. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TAUC L., GERSCHENFELD H. M. Cholinergic transmission mechanisms for both excitation and inhibition in molluscan central synapses. Nature. 1961 Oct 28;192:366–367. doi: 10.1038/192366a0. [DOI] [PubMed] [Google Scholar]
- VOGT M., GUNN C. G., Jr, SAWYER C. H. Electroencephalographic effects of intraventricular 5-HT and LSD in the cat. Neurology. 1957 Aug;7(8):559–566. doi: 10.1212/wnl.7.8.559. [DOI] [PubMed] [Google Scholar]
- WELSH J. H. Serotonin as a possible neurohumoral agent; evidence obtained in lower animals. Ann N Y Acad Sci. 1957 Mar 14;66(3):618–630. doi: 10.1111/j.1749-6632.1957.tb40752.x. [DOI] [PubMed] [Google Scholar]
- Weight F. F., Salmoiraghi G. C. Responses of spinal cord interneurons to acetylcholine, norepinephrine and serotonin administered by microelectrophoresis. J Pharmacol Exp Ther. 1966 Sep;153(3):420–427. [PubMed] [Google Scholar]