Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1968 Jan;194(1):51–74. doi: 10.1113/jphysiol.1968.sp008394

The action of caffeine on the activation of the contractile mechanism in striated muscle fibres

H C Lüttgau, H Oetliker
PMCID: PMC1365674  PMID: 5639790

Abstract

1. The effect of caffeine on the initiation of isometric tension in isolated twitch muscle fibres of the frog was recorded with a mechano-electrical transducer.

2. In Ringer solution as well as in solutions containing 95 mM-K2SO4, caffeine (6-10 mM) caused reversible contractures. Tension of maximal potassium contractures was reached with a half-time of 2-4 sec.

3. Caffeine caused a shift to lower potassium concentrations of the S-shaped curve which relates peak tension to log. [K]o or membrane potential. In subthreshold concentrations of caffeine (1·5 mM) the potassium concentration at which half of maximal tension was reached shifted from 30 to 16 mM-K (-39 to -53 mV).

4. In the `steady state' the ability of fibres to develop tension is related to log. [K]o or membrane potential by an S-shaped curve whose half value shifted from 28 to 45 mM-K (-41 to -29 mV) when 1·5 mM caffeine was applied.

5. Fibres were most sensitive to caffeine at membrane potentials between -50 and -20 mV.

6. The mechanical activity caused by caffeine was `stabilized' by an increase in [Ca]o or [Mg]o resembling the stabilizing action of these ions on potassium contractures or on the sodium permeability of excitable membranes.

7. Tetracaine in low concentrations (0·04-0·1 mM) increased the threshold for mechanical activation and shortened the plateau of potassium contractures. Higher concentrations (1-2 mM) suppressed mechanical activity completely.

8. Tetracaine, 0·04 mM, was sufficient to suppress tension caused by a 100 times stronger concentration of caffeine. With higher concentrations of caffeine the inhibitory action of tetracaine could be reversed.

9. Fibres which were immersed in subthreshold concentrations of caffeine either in Ringer solution or in a solution with 95 mM-K2SO4 developed a strong contracture after a sudden drop in temperature from 20 to 1-3° C.

10. The fast activation of the whole cross-section of the muscle fibre caused by caffeine and its dependence on membrane potential, tetracaine and external alkali earth ions favours the idea that the drug acts at some part of the sarcotubular system which is easily accessible for external ions and drugs and in close connextion with the surface membrane.

Full text

PDF
51

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AXELSSON J., THESLEFF S. Activation of the contractile mechanism in striated muscle. Acta Physiol Scand. 1958 Oct 28;44(1):55–66. doi: 10.1111/j.1748-1716.1958.tb01608.x. [DOI] [PubMed] [Google Scholar]
  2. BIANCHI C. P. Kinetics of radiocaffeine uptake and release in frog sartorius. J Pharmacol Exp Ther. 1962 Oct;138:41–47. [PubMed] [Google Scholar]
  3. Caputo C. Caffeine- and potassium-induced contractures of frog striated muscle fibers in hypertonic solutions. J Gen Physiol. 1966 Sep;50(1):129–139. doi: 10.1085/jgp.50.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Conway D., Sakai T. CAFFEINE CONTRACTURE. Proc Natl Acad Sci U S A. 1960 Jun;46(6):897–903. doi: 10.1073/pnas.46.6.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. ETZENSPERGER J., GASCIOLLI A. M. ACTION DE LA CAF'EINE SUR LES CONTRACTURES DE D'EPOLARISATION PRODUITES PAR LE POTASSIUM CHEZ LE MUSCLE STRI'E DE GRENOUILLE. C R Seances Soc Biol Fil. 1963;157:1776–1779. [PubMed] [Google Scholar]
  6. FEINSTEIN M. B. INHIBITION OF CAFFEINE RIGOR AND RADIOCALCIUM MOVEMENTS BY LOCAL ANESTHETICS IN FROG SARTORIUS MUSCLE. J Gen Physiol. 1963 Sep;47:151–172. doi: 10.1085/jgp.47.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. FRANKENHAEUSER B., HODGKIN A. L. The action of calcium on the electrical properties of squid axons. J Physiol. 1957 Jul 11;137(2):218–244. doi: 10.1113/jphysiol.1957.sp005808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FRANK G. B. Utilization of bound calcium in the action of caffeine and certain multivalent cations on skeletal muscle. J Physiol. 1962 Sep;163:254–268. doi: 10.1113/jphysiol.1962.sp006972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. FUJINO M., FUJINO S. DIE BEZIEHUNG ZWISCHEN COFFEIN-KONTRAKTUR UND CALCIUM AM FROSCHSKELETMUSKEL. Pflugers Arch Gesamte Physiol Menschen Tiere. 1964;278:478–486. [PubMed] [Google Scholar]
  10. Frankenhaeuser B., Lännergren J. The effect of calcium on the mechanical response of single twitch muscle fibres of Xenopus laevis. Acta Physiol Scand. 1967 Mar;69(3):242–254. doi: 10.1111/j.1748-1716.1967.tb03518.x. [DOI] [PubMed] [Google Scholar]
  11. HASSELBACH W. RELAXATION AND THE SARCOTUBULAR CALCIUM PUMP. Fed Proc. 1964 Sep-Oct;23:909–912. [PubMed] [Google Scholar]
  12. HILL D. K. THE SPACE ACCESSIBLE TO ALBUMIN WITHIN THE STRIATED MUSCLE FIBRE OF THE TOAD. J Physiol. 1964 Dec;175:275–294. doi: 10.1113/jphysiol.1964.sp007517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. HODGKIN A. L., HOROWICZ P. Potassium contractures in single muscle fibres. J Physiol. 1960 Sep;153:386–403. doi: 10.1113/jphysiol.1960.sp006541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. HODGKIN A. L., HOROWICZ P. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol. 1959 Oct;148:127–160. doi: 10.1113/jphysiol.1959.sp006278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. HUXLEY H. E. EVIDENCE FOR CONTINUITY BETWEEN THE CENTRAL ELEMENTS OF THE TRIADS AND EXTRACELLULAR SPACE IN FROG SARTORIUS MUSCLE. Nature. 1964 Jun 13;202:1067–1071. doi: 10.1038/2021067b0. [DOI] [PubMed] [Google Scholar]
  16. KOREY S. Some factors influencing the contractility of a non-conducting fiber preparation. Biochim Biophys Acta. 1950 Jan;4(1-3):58–67. doi: 10.1016/0006-3002(50)90009-6. [DOI] [PubMed] [Google Scholar]
  17. LUETTGAU H. C. THE ACTION OF CALCIUM IONS ON POTASSIUM CONTRACTURES OF SINGLE MUSCLE FIBRES. J Physiol. 1963 Oct;168:679–697. doi: 10.1113/jphysiol.1963.sp007215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. LUETTGAU H. C. THE EFFECT OF METABOLIC INHIBITORS ON THE FATIGUE OF THE ACTION POTENTIAL IN SINGLE MUSCLE FIBRES. J Physiol. 1965 May;178:45–67. doi: 10.1113/jphysiol.1965.sp007613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ludin H. P., Lüttgau H. C., Oetliker H. The effect of caffeine on the initiation of contraction in isolated muscle fibres of the frog. J Physiol. 1966 Oct;186(2):101P–102P. [PubMed] [Google Scholar]
  20. MATSUSHIMA T., FUJINO M., NAGAI T. Effects of anomalous anions on the caffeine contracture. Jpn J Physiol. 1962 Feb 15;12:106–112. doi: 10.2170/jjphysiol.12.106. [DOI] [PubMed] [Google Scholar]
  21. RITCHIE J. M. The effect of nitrate on the active state of muscle. J Physiol. 1954 Oct 28;126(1):155–168. doi: 10.1113/jphysiol.1954.sp005200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. SANDOW A., TAYLOR S. R., ISAASON A., SEGUIN J. J. ELECTROCHEMICAL COUPLING IN POTENTIATION OF MUSCULAR CONTRACTION. Science. 1964 Feb 7;143(3606):577–579. doi: 10.1126/science.143.3606.577. [DOI] [PubMed] [Google Scholar]
  23. SHANES A. M. Drug and ion effects in frog muscle. J Gen Physiol. 1950 Jul 20;33(6):729–744. doi: 10.1085/jgp.33.6.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. SUZUKI K. Studies on the mechanism of the excitation-contraction coupling in cardiac muscle, with special reference to the caffeine-contracture. Jpn J Physiol. 1962 Apr 15;12:186–199. doi: 10.2170/jjphysiol.12.186. [DOI] [PubMed] [Google Scholar]
  25. Sandow A. Excitation-contraction coupling in skeletal muscle. Pharmacol Rev. 1965 Sep;17(3):265–320. [PubMed] [Google Scholar]
  26. Sandow A., Taylor S. R., Preiser H. Role of the action potential in excitation-contraction coupling. Fed Proc. 1965 Sep-Oct;24(5):1116–1123. [PubMed] [Google Scholar]
  27. WEBER A., HERZ R., REISS I. THE REGULATION OF MYOFIBRILLAR ACTIVITY BY CALCIUM. Proc R Soc Lond B Biol Sci. 1964 Oct 27;160:489–501. doi: 10.1098/rspb.1964.0063. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES