Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1968 Jan;194(1):169–182. doi: 10.1113/jphysiol.1968.sp008400

Ionic requirements for arterial action potential

W R Keatinge
PMCID: PMC1365680  PMID: 5639765

Abstract

1. Strips of smooth muscle from common carotid arteries of sheep were electrically quiescent in solution containing Na 148 mM and Ca 2·5 mM.

2. When Ca was removed they became electrically active. Addition of low concentrations of Ca (0·025-0·075 mM) or Mg (0·025-0·750 mM) stopped their activity while ethylenediamine tetra-acetate (EDTA) (1·25 mM) accelerated it.

3. Replacement of Na by Tris or choline stopped the activity in Ca-free solution. After partial replacement of Na electrical activity could be restored by lowering the resting potential but after complete replacement of Na it could not.

4. In the presence of Ca (2·5 mM) small spikes could sometimes be induced after 20 min in Na-free Tris solution by lowering the resting potential by an increase in the external K concentration.

5. The results indicate that the depolarizing current of action potentials in this smooth muscle was largely carried by Na, although a little may have been carried by Ca in Ca-containing solutions.

6. The arteries in general resembled striated muscle rather than intestinal smooth muscle in these respects, but unlike striated muscle their action potentials were not stopped by tetrodotoxin.

Full text

PDF
169

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adrian E. D., Gelfan S. Rhythmic activity in skeletal muscle fibres. J Physiol. 1933 Jun 12;78(3):271–287. doi: 10.1113/jphysiol.1933.sp003002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BRINK F. The role of calcium ions in neural processes. Pharmacol Rev. 1954 Sep;6(3):243–298. [PubMed] [Google Scholar]
  3. BULBRING E., KURIYAMA H. Effects of changes in the external sodium and calcium concentrations on spontaneous electrical activity in smooth muscle of guinea-pig taenia coli. J Physiol. 1963 Apr;166:29–58. doi: 10.1113/jphysiol.1963.sp007089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bennett M. R. The effect of cations on the electrical properties of the smooth muscle cells of the guinea-pig vas deferens. J Physiol. 1967 Jun;190(3):465–479. doi: 10.1113/jphysiol.1967.sp008222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CUTHBERT A. W., SUTTER M. C. ELECTRICAL ACTIVITY OF A MAMMALIAN VEIN. Nature. 1964 Apr 4;202:95–95. doi: 10.1038/202095a0. [DOI] [PubMed] [Google Scholar]
  6. FATT P., GINSBORG B. L. The ionic requirements for the production of action potentials in crustacean muscle fibres. J Physiol. 1958 Aug 6;142(3):516–543. doi: 10.1113/jphysiol.1958.sp006034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. FATT P., KATZ B. The electrical properties of crustacean muscle fibres. J Physiol. 1953 Apr 28;120(1-2):171–204. doi: 10.1113/jphysiol.1953.sp004884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FRANKENHAEUSER B., HODGKIN A. L. The action of calcium on the electrical properties of squid axons. J Physiol. 1957 Jul 11;137(2):218–244. doi: 10.1113/jphysiol.1957.sp005808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. FUNAKI S., BOHR D. F. ELECTRICAL AND MECHANICAL ACTIVITY OF ISOLATED VASCULAR SMOOTH MUSCLE OF THE RAT. Nature. 1964 Jul 11;203:192–194. doi: 10.1038/203192b0. [DOI] [PubMed] [Google Scholar]
  10. HOLMAN M. E. The effect of changes in sodium chloride concentration on the smooth muscle of the guinea-pig's taenia coli. J Physiol. 1957 May 23;136(3):569–584. doi: 10.1113/jphysiol.1957.sp005782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hagiwara S., Nakajima S. Differences in Na and Ca spikes as examined by application of tetrodotoxin, procaine, and manganese ions. J Gen Physiol. 1966 Mar;49(4):793–806. doi: 10.1085/jgp.49.4.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. KEATINGE W. R. MECHANISM OF ADRENERGIC STIMULATION OF MAMMALIAN ARTERIES AND ITS FAILURE AT LOW TEMPERATURES. J Physiol. 1964 Nov;174:184–205. doi: 10.1113/jphysiol.1964.sp007481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. KOBAYASHI M., IRISAWA H. EFFECT OF SODIUM DEFICIENCY ON THE ACTION POTENTIAL OF THE SMOOTH MUSCLE OF URETER. Am J Physiol. 1964 Jan;206:205–210. doi: 10.1152/ajplegacy.1964.206.1.205. [DOI] [PubMed] [Google Scholar]
  14. KOLODNY R. L., VAN DER KLOOT W. G. Contraction of smooth muscles in non-ionic solutions. Nature. 1961 May 27;190:786–788. doi: 10.1038/190786a0. [DOI] [PubMed] [Google Scholar]
  15. Kao C. Y. Tetrodotoxin, saxitoxin and their significance in the study of excitation phenomena. Pharmacol Rev. 1966 Jun;18(2):997–1049. [PubMed] [Google Scholar]
  16. Keatinge W. R. Electrical and mechanical response of arteries to stimulation of sympathetic nerves. J Physiol. 1966 Aug;185(3):701–715. doi: 10.1113/jphysiol.1966.sp008011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Keatinge W. R. Sodium flux and electrical activity of arterial smooth muscle. J Physiol. 1968 Jan;194(1):183–200. doi: 10.1113/jphysiol.1968.sp008401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. NARAHASHI T., DEGUCHI T., URAKAWA N., OHKUBO Y. Stabilization and rectification of muscle fiber membrane by tetrodotoxin. Am J Physiol. 1960 May;198:934–938. doi: 10.1152/ajplegacy.1960.198.5.934. [DOI] [PubMed] [Google Scholar]
  19. Niedergerke R., Orkand R. K. The dependence of the action potential of the frog's heart on the external and intracellular sodium concentration. J Physiol. 1966 May;184(2):312–334. doi: 10.1113/jphysiol.1966.sp007917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. SPEDEN R. N. ELECTRICAL ACTIVITY OF SINGLE SMOOTH MUSCLE CELLS OF THE MESENTERIC ARTERY PRODUCED BY SPLANCHNIC NERVE STIMULATION IN THE GUINEA PIG. Nature. 1964 Apr 11;202:193–194. doi: 10.1038/202193a0. [DOI] [PubMed] [Google Scholar]
  21. Steedman W. M. Micro-electrode studies on mammalian vascular muscle. J Physiol. 1966 Oct;186(2):382–400. doi: 10.1113/jphysiol.1966.sp008041. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES