Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1968 Jan;194(1):201–223. doi: 10.1113/jphysiol.1968.sp008402

Reticulospinal inhibition of transmission in reflex pathways

I Engberg, A Lundberg, R W Ryall
PMCID: PMC1365682  PMID: 4295754

Abstract

1. The effect of electrical stimulation of the brain stem on reflex transmission has been investigated in decerebrate cats after partial transection of the spinal cord.

2. Brain stem stimuli that do not evoke inhibitory post-synaptic potentials (IPSPs) in motoneurones or primary afferent depolarization may still effectively depress the excitatory and inhibitory synaptic actions evoked from the flexor reflex afferents (FRA) and from Ib afferents. There is no effect on post-synaptic potentials from Ia afferents or on Renshaw IPSPs. The depression is not associated with any measurable change in conductance over the motoneuronal membrane.

3. There is also inhibition from the brain stem of transmission from the FRA (but not from Ia and Ib afferents) to primary afferent terminals and to ascending spinal pathways.

4. It is concluded that this inhibition from the brain stem is exerted at an interneuronal level in spinal reflex paths.

5. The inhibitory action is evoked from the region of Magoun's inhibitory centres in the brain stem and is mediated by axons with a conduction velocity of at least 20 m/sec. The axons are distributed in the dorsal part of the lateral funicle.

6. The pathway mediating the inhibition from the brain stem is named the dorsal reticulospinal system. Its possible role in maintaining the decerebrate control of reflexes is discussed and related to the problem of a selective control of some paths from a primary afferent system.

Full text

PDF
201

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDEN N. E., JUKES M. G., LUNDBERG A. SPINAL REFLEXES AND MONOAMINE LIBERATION. Nature. 1964 Jun 20;202:1222–1223. doi: 10.1038/2021222a0. [DOI] [PubMed] [Google Scholar]
  2. ANDEN N. E., JUKES M. G., LUNDBERG A., VYKLICKY L. A NEW SPINAL FLEXOR REFLEX. Nature. 1964 Jun 27;202:1344–1345. doi: 10.1038/2021344b0. [DOI] [PubMed] [Google Scholar]
  3. ANDERSEN P., ECCLES J. C., SEARS T. A. CORTICALLY EVOKED DEPOLARIZATION OF PRIMARY AFFERENT FIBERS IN THE SPINAL CORD. J Neurophysiol. 1964 Jan;27:63–77. doi: 10.1152/jn.1964.27.1.63. [DOI] [PubMed] [Google Scholar]
  4. Andén N. E., Jukes M. G., Lundberg A., Vyklický L. The effect of DOPA on the spinal cord. 1. Influence on transmission from primary afferents. Acta Physiol Scand. 1966 Jul-Aug;67(3):373–386. doi: 10.1111/j.1748-1716.1966.tb03324.x. [DOI] [PubMed] [Google Scholar]
  5. Bergmans J., Grillner S. Reflex activation and regulation of spontaneous activity in static and dynamic gamma-motoneurones. Brain Res. 1967 May;5(1):114–117. doi: 10.1016/0006-8993(67)90223-5. [DOI] [PubMed] [Google Scholar]
  6. CARPENTER D., ENGBERG I., FUNKENSTEIN H., LUNDBERG A. DECEREBRATE CONTROL OF REFLEXES TO PRIMARY AFFERENTS. Acta Physiol Scand. 1963 Dec;59:424–437. doi: 10.1111/j.1748-1716.1963.tb02758.x. [DOI] [PubMed] [Google Scholar]
  7. CARPENTER D., LUNDBERG A., NORRSELL U. PRIMARY AFFERENT DEPOLARIZATION EVOKED FROM THE SENSORIMOTOR CORTEX. Acta Physiol Scand. 1963 Sep-Oct;59:126–142. doi: 10.1111/j.1748-1716.1963.tb02729.x. [DOI] [PubMed] [Google Scholar]
  8. Carpenter D., Engberg I., Lundberg A. Primary afferent depolarization evoked from the brain stem and the cerebellum. Arch Ital Biol. 1966 Mar;104(1):73–85. [PubMed] [Google Scholar]
  9. ECCLES R. M., LUNDBERG A. Supraspinal control of interneurones mediating spinal reflexes. J Physiol. 1959 Oct;147:565–584. doi: 10.1113/jphysiol.1959.sp006262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Engberg I., Lundberg A., Ryall R. W. Reticulospinal inhibition of transmission through interneurones of spinal reflex pathways. Experientia. 1965 Oct 15;21(10):612–613. doi: 10.1007/BF02151565. [DOI] [PubMed] [Google Scholar]
  11. HUGELIN A. Analyse de l'inhibition d'un réflexe nociceptif (réflexe linguo-maxillaire) lors de l'activation du système réticulospinal dit facilitateur. C R Seances Soc Biol Fil. 1955 Nov;149(21-22):1893–1898. [PubMed] [Google Scholar]
  12. HUGELIN A., DUMONT S. [Reticular control of the linguomaxillary reflex and the somesthetic afferentia]. J Physiol (Paris) 1960 Jan-Feb;52:119–120. [PubMed] [Google Scholar]
  13. Hongo T., Jankowska E., Lundberg A. Effects evoked from the rubrospinal tract in cats. Experientia. 1965 Sep 15;21(9):525–526. doi: 10.1007/BF02138973. [DOI] [PubMed] [Google Scholar]
  14. Jankowska E., Jukes M. G., Lund S., Lundberg A. The effect of DOPA on the spinal cord. 5. Reciprocal organization of pathways transmitting excitatory action to alpha motoneurones of flexors and extensors. Acta Physiol Scand. 1967 Jul-Aug;70(3):369–388. doi: 10.1111/j.1748-1716.1967.tb03636.x. [DOI] [PubMed] [Google Scholar]
  15. Jankowska E., Lund S., Lundberg A., Pompeiano O. Postsynaptic inhibition in motoneurones evoked from the lower reticular formation. Experientia. 1964 Dec 15;20(12):701–702. doi: 10.1007/BF02145284. [DOI] [PubMed] [Google Scholar]
  16. KUNO M., PERL E. R. Alteration of spinal reflexes by interaction with suprasegmental and dorsal root activity. J Physiol. 1960 Apr;151:103–122. [PMC free article] [PubMed] [Google Scholar]
  17. KURU M., KURATI T., KOYAMA Y. The bulbar vesico-constrictor center and the bulbo-sacral connections arising from it: a study of the function of the lateral reticulo-spinal tract. J Comp Neurol. 1959 Dec;113:365–388. doi: 10.1002/cne.901130303. [DOI] [PubMed] [Google Scholar]
  18. KUYPERS H. G. THE DESCENDING PATHWAYS TO THE SPINAL CORD, THEIR ANATOMY AND FUNCTION. Prog Brain Res. 1964;11:178–202. doi: 10.1016/s0079-6123(08)64048-0. [DOI] [PubMed] [Google Scholar]
  19. LLINAS R., TERZUOLO C. A. MECHANISMS OF SUPRASPINAL ACTIONS UPON SPINAL CORD ACTIVITIES. RETICULAR INHIBITORY MECHANISMS ON ALPHA-EXTENSOR MOTONEURONS. J Neurophysiol. 1964 Jul;27:579–591. doi: 10.1152/jn.1964.27.4.579. [DOI] [PubMed] [Google Scholar]
  20. LUNDBERG A. SUPRASPINAL CONTROL OF TRANSMISSION IN REFLEX PATHS TO MOTONEURONES AND PRIMARY AFFERENTS. Prog Brain Res. 1964;12:197–221. doi: 10.1016/s0079-6123(08)60624-x. [DOI] [PubMed] [Google Scholar]
  21. Lundberg A., Vyklický L. Inhibition of transmission to primary afferents by electrical stimulation of the brain stem. Arch Ital Biol. 1966 Mar;104(1):86–97. [PubMed] [Google Scholar]
  22. Morrison A. R., Pompeiano O. Central depolarization of group I a afferent fibers during desynchronized sleep. Arch Ital Biol. 1965 Dec 10;103(4):517–537. [PubMed] [Google Scholar]
  23. NYBERG-HANSEN R. SITES AND MODE OF TERMINATION OF RETICULO-SPINAL FIBERS IN THE CAT. AN EXPERIMENTAL STUDY WITH SILVER IMPREGNATION METHODS. J Comp Neurol. 1965 Feb;124:71–99. doi: 10.1002/cne.901240107. [DOI] [PubMed] [Google Scholar]
  24. OSCARSSON O. Functional organization of the ventral spino-cerebellar tract in the cat. II. Connections with muscle, joint, and skin nerve afferents and effects on adequate stimulation of various receptors. Acta Physiol Scand Suppl. 1957;42(146):1–107. [PubMed] [Google Scholar]
  25. SHIMAMURA M., LIVINGSTON R. B. Longitudinal conduction systems serving spinal and brain-stem coordination. J Neurophysiol. 1963 Mar;26:258–272. doi: 10.1152/jn.1963.26.2.258. [DOI] [PubMed] [Google Scholar]
  26. TORVIK A., BRODAL A. The origin of reticulospinal fibers in the cat; an experimental study. Anat Rec. 1957 May;128(1):113–137. doi: 10.1002/ar.1091280110. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES