Abstract
1. Frog and toad sartorius muscles were soaked in ferritin suspensions and then fixed and prepared for electron microscopy. Ferritin particles were counted in micrographs of regions where fibril striations were in good register, and the number of particles plotted according to position along the sarcomeres.
2. The distribution of ferritin particles in both frog and toad muscle sarcomeres could be accounted for by a single peak centred at the Z-line, with a total width of about 0·4 μ.
3. The peak in toad fibres was slightly broader than that in frog fibres, and this was due to more frequent branching of the T-system in the toad. In both frog and toad sartorius muscles branching increases the total quantity of T-system by around 30%.
4. No peak was found in the ferritin distribution which could account for the peak of albumin distribution observed near the A—I boundary of toad sartorius muscles by Hill (1964).
Full text
PDF











Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- FALK G., FATT P. LINEAR ELECTRICAL PROPERTIES OF STRIATED MUSCLE FIBRES OBSERVED WITH INTRACELLULAR ELECTRODES. Proc R Soc Lond B Biol Sci. 1964 Apr 14;160:69–123. doi: 10.1098/rspb.1964.0030. [DOI] [PubMed] [Google Scholar]
- HARRISON P. M. The structure of apoferritin: molecular size, shape and symmetry from x-ray data. J Mol Biol. 1963 May;6:404–422. doi: 10.1016/s0022-2836(63)80052-2. [DOI] [PubMed] [Google Scholar]
- HILL D. K. THE SPACE ACCESSIBLE TO ALBUMIN WITHIN THE STRIATED MUSCLE FIBRE OF THE TOAD. J Physiol. 1964 Dec;175:275–294. doi: 10.1113/jphysiol.1964.sp007517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUXLEY A. F., TAYLOR R. E. Local activation of striated muscle fibres. J Physiol. 1958 Dec 30;144(3):426–441. doi: 10.1113/jphysiol.1958.sp006111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUXLEY H. E. EVIDENCE FOR CONTINUITY BETWEEN THE CENTRAL ELEMENTS OF THE TRIADS AND EXTRACELLULAR SPACE IN FROG SARTORIUS MUSCLE. Nature. 1964 Jun 13;202:1067–1071. doi: 10.1038/2021067b0. [DOI] [PubMed] [Google Scholar]
- Jasper D. Body muscles of the lamprey. Some structural features of the T system and sarcolemma. J Cell Biol. 1967 Jan;32(1):219–227. doi: 10.1083/jcb.32.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Page S. G. A comparison of the fine structures of frog slow and twitch muscle fibers. J Cell Biol. 1965 Aug;26(2):477–497. doi: 10.1083/jcb.26.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peachey L. D. The role of transverse tubules in excitation contraction coupling in striated muscles. Ann N Y Acad Sci. 1966 Jul 14;137(2):1025–1037. doi: 10.1111/j.1749-6632.1966.tb50214.x. [DOI] [PubMed] [Google Scholar]
- Peachey L. D. The sarcoplasmic reticulum and transverse tubules of the frog's sartorius. J Cell Biol. 1965 Jun;25(3 Suppl):209–231. doi: 10.1083/jcb.25.3.209. [DOI] [PubMed] [Google Scholar]
- REVEL J. P. The sarcoplasmic reticulum of the bat cricothroid muscle. J Cell Biol. 1962 Mar;12:571–588. doi: 10.1083/jcb.12.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sandow A. Excitation-contraction coupling in skeletal muscle. Pharmacol Rev. 1965 Sep;17(3):265–320. [PubMed] [Google Scholar]
- VERATTI E. Investigations on the fine structure of striated muscle fiber read before the Reale Istituto Lombardo, 13 March 1902. J Biophys Biochem Cytol. 1961 Aug;10(4):1–59. doi: 10.1083/jcb.10.4.1. [DOI] [PMC free article] [PubMed] [Google Scholar]



