Full text
PDF![289](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a71/1366077/b89e4cba7bec/jphysiol01423-0071.png)
![290](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a71/1366077/f8e3a9aead39/jphysiol01423-0072.png)
![291](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a71/1366077/d437c21e6a56/jphysiol01423-0073.png)
![292](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a71/1366077/e237733363da/jphysiol01423-0074.png)
![293](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a71/1366077/38a5f7c660c2/jphysiol01423-0075.png)
![294](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a71/1366077/649352677373/jphysiol01423-0076.png)
![295](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a71/1366077/6e4e7199bbaf/jphysiol01423-0077.png)
![296](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a71/1366077/ec51421d2aab/jphysiol01423-0078.png)
![297](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a71/1366077/103bc10fcedb/jphysiol01423-0079.png)
![298](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a71/1366077/7ed345c4990c/jphysiol01423-0080.png)
![299](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a71/1366077/c4337143457f/jphysiol01423-0081.png)
![300](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a71/1366077/0554521312f5/jphysiol01423-0082.png)
![301](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a71/1366077/1dc542957184/jphysiol01423-0083.png)
![302](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a71/1366077/e30088b77203/jphysiol01423-0084.png)
![303](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a71/1366077/424161f5e150/jphysiol01423-0085.png)
![304](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a71/1366077/2ca8e5efc921/jphysiol01423-0086.png)
![305](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a71/1366077/b56bd00623aa/jphysiol01423-0087.png)
![306](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a71/1366077/186f9fe0ffb6/jphysiol01423-0088.png)
![307](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a71/1366077/2e20195e3285/jphysiol01423-0089.png)
![308](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a71/1366077/3397e99b9f67/jphysiol01423-0090.png)
![309](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a71/1366077/c54ab1d2e6ef/jphysiol01423-0091.png)
![310](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a71/1366077/6b8d890a8182/jphysiol01423-0092.png)
![311](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a71/1366077/39e0fcf89811/jphysiol01423-0093.png)
![312](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a71/1366077/eb1587458c2a/jphysiol01423-0094.png)
![313](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a71/1366077/d5ed18df16aa/jphysiol01423-0095.png)
![314](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a71/1366077/8f8c31bfe489/jphysiol01423-0096.png)
![315](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a71/1366077/627f996d3da6/jphysiol01423-0097.png)
![316](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a71/1366077/079427526ef7/jphysiol01423-0098.png)
![317](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a71/1366077/ed8854ede44e/jphysiol01423-0099.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BROCK L. G., COOMBS J. S., ECCLES J. C. The recording of potentials from motoneurones with an intracellular electrode. J Physiol. 1952 Aug;117(4):431–460. doi: 10.1113/jphysiol.1952.sp004759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bremer F. Researches on the contracture of skeletal muscle. J Physiol. 1932 Sep 16;76(1):65–94.2. doi: 10.1113/jphysiol.1932.sp002912. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FATT P., KATZ B. An analysis of the end-plate potential recorded with an intracellular electrode. J Physiol. 1951 Nov 28;115(3):320–370. doi: 10.1113/jphysiol.1951.sp004675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUNT C. C., KUFFLER S. W. Further study of efferent small-nerve fibers to mammalian muscle spindles; multiple spindle innervation and activity during contraction. J Physiol. 1951 Apr;113(2-3):283–297. doi: 10.1113/jphysiol.1951.sp004572. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JARCHO L. W., EYZAGUIRRE C., BERMAN B., LILIENTHAL J. L., Jr Spread of excitation in skeletal muscle; some factors contributing to the form of the electromyogram. Am J Physiol. 1952 Feb;168(2):446–457. doi: 10.1152/ajplegacy.1952.168.2.446. [DOI] [PubMed] [Google Scholar]
- KATZ B. The efferent regulation of the muscle spindle in the frog. J Exp Biol. 1949 Aug;26(2):201–217. doi: 10.1242/jeb.26.2.201. [DOI] [PubMed] [Google Scholar]
- KUFFLER S. W., HUNT C. C. The mammalian small-nerve fibers: a system for efferent nervous regulation of muscle spindle discharge. Res Publ Assoc Res Nerv Ment Dis. 1952;30:24–47. [PubMed] [Google Scholar]
- KUFFLER S. W., VAUGHAN WILLIAMS E. M. Properties of the 'slow' skeletal muscles fibres of the frog. J Physiol. 1953 Aug;121(2):318–340. doi: 10.1113/jphysiol.1953.sp004949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LAPORTE Y., LORENTE de NO R. Potential changes evoked in a curarized sympathetic ganglion by presynaptic volleys of impulses. J Cell Physiol Suppl. 1950 Jul;35(Suppl 2):61–106. doi: 10.1002/jcp.1030350505. [DOI] [PubMed] [Google Scholar]
- LING G., GERARD R. W. The normal membrane potential of frog sartorius fibers. J Cell Physiol. 1949 Dec;34(3):383–396. doi: 10.1002/jcp.1030340304. [DOI] [PubMed] [Google Scholar]
- RUSHTON W. A. H. The site of excitation in the nerve trunk of the frog. J Physiol. 1949 Sep;109(3-4):314–326. doi: 10.1113/jphysiol.1949.sp004395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TALBOT S. A., LILIENTHAL J. L., Jr, BESER J., REYNOLDS L. W. A wide range mechano-electronic transducer for physiological applications. Rev Sci Instrum. 1951 Apr;22(4):233–236. doi: 10.1063/1.1745898. [DOI] [PubMed] [Google Scholar]