Abstract
The bacterial virus, ΦX174, which contains a single strand of DNA has been inactivated by different wave lengths of monochromatic ultraviolet light at pH 7, 2, and 12. The action spectra for inactivation at these three pH's all showed minima at 2400 A rather than at 2300 A, which is the characteristic absorption minimum of DNA. The shapes of the action spectra have been analyzed in terms of the effects of absorbed light on the pyrimidines and purines rather than the effect on nucleoprotein. In this interpretation the pyrimidines are at least 2 to 3 times more sensitive than the purines. The quantum yield for inactivation of the virus at 2650 A and pH 7 is 0.006. The quantum efficiency for quanta absorbed in the pyrimidines is 0.0085 and for the purines 0.0035. It is pointed out that action spectra for single- and double-stranded polynucleotides should have minima at different wave lengths, and that this difference may be used to distinguish between these two configurations in vivo.
Full text
PDF












Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BEAVEN G. H., HOLIDAY E. R. Ultraviolet absorption spectra of proteins and amino acids. Adv Protein Chem. 1952;7:319–386. doi: 10.1016/s0065-3233(08)60022-4. [DOI] [PubMed] [Google Scholar]
- Hollaender A., Duggar B. M. Irradiation of Plant Viruses and of Microörganisms with Monochromatic Light: III. Resistance of the Virus of Typical Tobacco Mosaic and Escherichia Coli to Radiation from lambda 3000 to lambda 2250 A. Proc Natl Acad Sci U S A. 1936 Jan;22(1):19–24. doi: 10.1073/pnas.22.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SETLOW R. Action spectroscopy. Adv Biol Med Phys. 1957;5:37–74. doi: 10.1016/b978-1-4832-3111-2.50005-5. [DOI] [PubMed] [Google Scholar]
- SETLOW R., DOYLE B. The effect of light of wavelength 2,537 A on proteins and nucleic acid at low temperatures. Biochim Biophys Acta. 1953 Dec;12(4):508–514. doi: 10.1016/0006-3002(53)90181-4. [DOI] [PubMed] [Google Scholar]
- SETLOW R. The use of action spectra to determine the physical state of DNA in vivo. Biochim Biophys Acta. 1960 Mar 25;39:180–181. doi: 10.1016/0006-3002(60)90146-3. [DOI] [PubMed] [Google Scholar]
- SHORE V. G., PARDEE A. B. Energy transfer in conjugated proteins and nucleic acids. Arch Biochem Biophys. 1956 Jun;62(2):355–368. doi: 10.1016/0003-9861(56)90134-5. [DOI] [PubMed] [Google Scholar]
- SHUGAR D., WIERZCHOWSKI K. L. Photochemistry of nucleic acids, nucleic acid derivatives and related compounds. Postepy Biochem. 1958;4(2):243–296. [PubMed] [Google Scholar]
- SINSHEIMER R. L., HASTINGS R. A reversible photochemical alteration of uracil and uridine. Science. 1949 Nov 18;110(2864):525–525. doi: 10.1126/science.110.2864.525. [DOI] [PubMed] [Google Scholar]
- SINSHEIMER R. L. The photochemistry of cytidylic acid. Radiat Res. 1957 Feb;6(2):121–125. [PubMed] [Google Scholar]
- Setlow J. K., Setlow R. B. EVIDENCE FOR THE EXISTENCE OF A SINGLE-STRANDED STAGE OF T2 BACTERIOPHAGE DURING REPLICATION. Proc Natl Acad Sci U S A. 1960 Jun;46(6):791–798. doi: 10.1073/pnas.46.6.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ZAHLER S. A. Some biological properties of bacteriophages S13 and theta X-174. J Bacteriol. 1958 Mar;75(3):310–315. doi: 10.1128/jb.75.3.310-315.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ZELLE M. R., HOLLAENDER A. Monochromatic ultraviolet action spectra and quantum yields for inactivation of T1 and T2 Escherichia coli bacteriophages. J Bacteriol. 1954 Aug;68(2):210–215. doi: 10.1128/jb.68.2.210-215.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]