Abstract
In order to evaluate the feasibility of observing the spectral behavior of protein groups in the coordination sphere of the iron in hemeproteins, criteria are developed to determine whether or not the application of difference absorption spectroscopy to the study of complex formation will be successful. Absolute absorption spectra, 300-1100 mμ, from bacterial catalase complexes are displayed, and the infrared bands correlated with magnetic susceptibility values of similar complexes of other hemeproteins. Dissociation constants for the formation of cyanide and azide complexes of metmyoglobin, methemoglobin, bacterial catalase, and horseradish peroxidase are given. Difference spectra, 210-280 mμ, are displayed for cyanide and azide complexes of these hemeproteins. A band at 235-241 mμ is found in the difference spectra of all low-spin vs. high-spin complexes. The factors which favor the assignment of this band to a transition involving a histidine residue are presented.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- BEERS R. F., Jr Submerged culture of Micrococcus lysodeikticus for large-scale production of cells. Science. 1955 Nov 25;122(3178):1016–1016. doi: 10.1126/science.122.3178.1016. [DOI] [PubMed] [Google Scholar]
- BEETLESTONE J., GEORGE P. A MAGNETOCHEMICAL STUDY OF EQUILIBRIA BETWEEN HIGH AND LOW SPIN STATES OF METMYOGLOBIN COMPLEXES. Biochemistry. 1964 May;3:707–714. doi: 10.1021/bi00893a019. [DOI] [PubMed] [Google Scholar]
- BLANCK J., GRAF W., SCHELER W. [Kinetic studies on the formation of metmyoglobin aggregates]. Acta Biol Med Ger. 1961;7:323–326. [PubMed] [Google Scholar]
- Brill A. S., Sandberg H. E. Spin-state-dependent hemoprotein ultraviolet-absorption bands. Proc Natl Acad Sci U S A. 1967 Jan;57(1):136–140. doi: 10.1073/pnas.57.1.136. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brill A. S., Weinryb I. Reactions of horseradish peroxidase with azide. Evidence for a methionine residue at the active site. Biochemistry. 1967 Nov;6(11):3528–3535. doi: 10.1021/bi00863a026. [DOI] [PubMed] [Google Scholar]
- CHANCE B., HERBERT D. The enzymesubstrate compounds of bacterial catalase and peroxides. Biochem J. 1950 Apr;46(4):402–414. doi: 10.1042/bj0460402. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FISHER H. F., CROSS D. G. SPECTROPHOTOMETRIC STUDIES OF THE QUATERNARY STRUCTURE OF PROTEINS. I. METHOD OF CONCENTRATION-DIFFERENCE SPECTRA. Arch Biochem Biophys. 1965 Apr;110:217–221. doi: 10.1016/0003-9861(65)90177-3. [DOI] [PubMed] [Google Scholar]
- HERSKOVITS T. T., LASKOWSKI M., Jr Location of chromophoric residues in proteins by solvent perturbation. I. Tyrosyls in serum albumins. J Biol Chem. 1962 Aug;237:2481–2492. [PubMed] [Google Scholar]
- Herbert D., Pinsent J. Crystalline bacterial catalase. Biochem J. 1948;43(2):193–202. doi: 10.1042/bj0430193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OFFENHARTZ P. O. ELECTRONIC SPECTRA OF FERRIMYOGLOBIN HYDROXIDE AND OTHER HEMOPROTEIN DERIVATIVES. J Chem Phys. 1965 May 15;42:3566–3572. doi: 10.1063/1.1695763. [DOI] [PubMed] [Google Scholar]
- SCHELER W., SCHOFFA G., JUNG F. Lichtabsorption und paramagnetische Suszeptibilität bei Derivaten des Pferde- und Chironomus-Methämoglobins sowie des Pferde-Metmyoglobins. Biochem Z. 1957;329(3):232–246. [PubMed] [Google Scholar]
- THEORELL H., EHRENBERG A. Magnetic properties of some peroxide compounds of myoglobin, peroxidase and catalase. Arch Biochem Biophys. 1952 Dec;41(2):442–461. [PubMed] [Google Scholar]
- THEORELL H., YONETANI T. STUDIES ON LIVER ALCOHOL DEHYDROGENASE COMPLEXES. IV. SPECTROPHOTOMETRIC OBSERVATIONS ON THE ENZYME COMPLEXES. Arch Biochem Biophys. 1964 Jul 20;106:252–258. doi: 10.1016/0003-9861(64)90185-7. [DOI] [PubMed] [Google Scholar]
- Urry D. W. The heme chromophore in the ultraviolet. J Biol Chem. 1967 Oct 10;242(19):4441–4448. [PubMed] [Google Scholar]