Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1968 Jan;8(1):83–97. doi: 10.1016/S0006-3495(68)86476-8

Elastic-Mathematical Theory of Cells and Mitochondria in Swelling Process

II. Effect of Temperature upon Modulus of Elasticity of Membranous Material of Egg Cells of Sea Urchin, Strongylocentrotus purpuratus, and of Oyster, Crassostrea virginica

M J Mela
PMCID: PMC1367360  PMID: 5689191

Abstract

The elastic behavior of the cell wall as a function of the temperature has been studied with particular attention being given to the swelling of egg cells of Strongylocentrotus purpuratus and Crassostrea virginica in different sea water concentrations at different temperatures. It was found that the modulus of elasticity is a nonlinear function of temperature. At about 12-13°C the modulus of elasticity (E) is constant, independent of the stress (σ) and strain (εν) which exist at the cell wall; the membranous material follows Hooke's law, and E ≈ 3 × 107 dyn/cm2 for S. purpuratus and C. virginica. When the temperature is higher or lower than 12-13°C, the modulus of elasticity increases, and the membranous material does not follow Hooke's law, but is almost directly proportional to the stresses existing at the cell wall. On increasing the stress, the function Eσ = E(σ) approaches saturation. The corresponding stress-strain diagrams, σ = σ(εν), and the graphs, Eσ = E(σ) and Eσ = E(t) are given. The cyto-elastic phenomena at the membrane are discussed.

Full text

PDF
83

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AFZELIUS B. A. The ultrastructure of the cortical granules and their products in the sea urchin egg as studied with the electron microscope. Exp Cell Res. 1956 Apr;10(2):257–285. doi: 10.1016/0014-4827(56)90001-5. [DOI] [PubMed] [Google Scholar]
  2. DICK D. A. Osmotic properties of living cells. Int Rev Cytol. 1959;8:387–448. doi: 10.1016/s0074-7696(08)62736-9. [DOI] [PubMed] [Google Scholar]
  3. MERCER E. H., WOLPERT L. An electron microscope study of the cortex of the sea urchin (Psammechinus miliaris) egg. Exp Cell Res. 1962 Jun;27:1–13. doi: 10.1016/0014-4827(62)90037-x. [DOI] [PubMed] [Google Scholar]
  4. Mela M. J. Elastic-mathematical theory of cells and mitochondria in swelling process the membranous stresses and modulus of elasticity of the egg cell of sea urchin, Strongylocentrotus purpuratus. Biophys J. 2008 Dec 31;7(1):95–110. doi: 10.1016/S0006-3495(67)86577-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. RAND R. P. MECHANICAL PROPERTIES OF THE RED CELL MEMBRANE. II. VISCOELASTIC BREAKDOWN OF THE MEMBRANE. Biophys J. 1964 Jul;4:303–316. doi: 10.1016/s0006-3495(64)86784-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Rikmenspoel R. Elastic properties of the sea urchin sperm flagellum. Biophys J. 2008 Dec 31;6(4):471–479. doi: 10.1016/S0006-3495(66)86670-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Rikmenspoel R. The tail movement of bull spermatozoa. Observations and model calculations. Biophys J. 1965 Jul;5(4):365–392. doi: 10.1016/S0006-3495(65)86723-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. WOLPERT L., MERCER E. H. An electron microscope study of fertilisation of the sea urchin egg Psammechinus miliaris. Exp Cell Res. 1961 Jan;22:45–55. doi: 10.1016/0014-4827(61)90085-4. [DOI] [PubMed] [Google Scholar]
  9. Wolpert L. The mechanical properties of the membrane of the sea urchin egg during cleavage. Exp Cell Res. 1966 Feb;41(2):385–396. doi: 10.1016/s0014-4827(66)80146-5. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES