Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1968 May;8(5):650–664. doi: 10.1016/S0006-3495(68)86513-0

Replicating Units (Replicons) of DNA in Cultured Mammalian Cells

S Okada
PMCID: PMC1367405  PMID: 5699801

Abstract

Exponentially growing L5178Y mouse leukemic cells were incubated in the presence of 5′-bromodeoxyuridine (BUdR) for about 4 hr, transferred to the nonBUdR-containing medium for a certain period (t hours), and then pulse-labeled with TdR-3H for 10 min. When DNA isolated from these cells was subjected to CsCl gradient centrifugation, the 3H-activity was found to shift gradually from the heavy BUdR-containing peak to the light nonBUdR-containing peak with increasing time t. The average time required for the complete shift of 3H-activity from the heavy to the light DNA fraction was 2.76 hr. Taking this as the average replicating time and the size of DNA fragments in the present preparation as 1.3 × 107 daltons, the rate of replication was found to be 2.1 nucleotides per strand per replicon per sec. By taking the upper limit of the average replicating time as the S period (7.3 hr), various characteristics of the replicating units, such as the lower and upper limits of average size, the average replicating time, the average number of replicating units, etc., were calculated (see Table I).

Full text

PDF
650

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BONHOEFFER F., GIERER A. ON THE GROWTH MECHANISM OF THE BACTERIAL CHROMOSOME. J Mol Biol. 1963 Nov;7:534–540. doi: 10.1016/s0022-2836(63)80100-x. [DOI] [PubMed] [Google Scholar]
  2. BURGI E., HERSHEY A. D. Sedimentation rate as a measure of molecular weight of DNA. Biophys J. 1963 Jul;3:309–321. doi: 10.1016/s0006-3495(63)86823-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Corneo G., Moore C., Sanadi D. R., Grossman L. I., Marmur J. Mitochondrial DNA in yeast and some mammalian species. Science. 1966 Feb 11;151(3711):687–689. doi: 10.1126/science.151.3711.687. [DOI] [PubMed] [Google Scholar]
  4. DENDY P. P., CLEAVER J. E. AN INVESTIGATION OF (A) VARIATION IN RATE OF DNA-SYNTHESIS DURING S-PHASE IN MOUSE L-CELLS; (B) EFFECT OF ULTRA-VIOLET RADIATION ON RATE OF DNA-SYNTHESIS. Int J Radiat Biol Relat Stud Phys Chem Med. 1964;8:301–315. doi: 10.1080/09553006414550371. [DOI] [PubMed] [Google Scholar]
  5. DJORDJEVIC B., SZYBALSKI W. Genetics of human cell lines. III. Incorporation of 5-bromo- and 5-iododeoxyuridine into the deoxyribonucleic acid of human cells and its effect on radiation sensitivity. J Exp Med. 1960 Sep 1;112:509–531. doi: 10.1084/jem.112.3.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DuPraw E. J. Macromolecular organization of nuclei and chromosomes: a folded fibre model based on whole-mount electron microscopy. Nature. 1965 Apr 24;206(982):338–343. doi: 10.1038/206338a0. [DOI] [PubMed] [Google Scholar]
  7. Eigner J., Doty P. The native, denatured and renatured states of deoxyribonucleic acid. J Mol Biol. 1965 Jul;12(3):549–580. doi: 10.1016/s0022-2836(65)80312-6. [DOI] [PubMed] [Google Scholar]
  8. HANAWALT P. C., RAY D. S. ISOLATION OF THE GROWING POINT IN THE BACTERIAL CHROMOSOME. Proc Natl Acad Sci U S A. 1964 Jul;52:125–132. doi: 10.1073/pnas.52.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HOTTA Y., BASSEL A. MOLECULAR SIZE AND CIRCULARITY OF DNA IN CELLS OF MAMMALS AND HIGHER PLANTS. Proc Natl Acad Sci U S A. 1965 Feb;53:356–362. doi: 10.1073/pnas.53.2.356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Huberman J. A., Riggs A. D. Autoradiography of chromosomal DNA fibers from Chinese hamster cells. Proc Natl Acad Sci U S A. 1966 Mar;55(3):599–606. doi: 10.1073/pnas.55.3.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. JACOB F., BRENNER S. [On the regulation of DNA synthesis in bacteria: the hypothesis of the replicon]. C R Hebd Seances Acad Sci. 1963 Jan 2;256:298–300. [PubMed] [Google Scholar]
  12. Killander D., Zetterberg A. A quantitative cytochemical investigation of the relationship between cell mass and initiation of DNA synthesis in mouse fibroblasts in vitro. Exp Cell Res. 1965 Oct;40(1):12–20. doi: 10.1016/0014-4827(65)90285-5. [DOI] [PubMed] [Google Scholar]
  13. LAJTHA L. G., OLIVER R., ELLIS F. Incorporation of 32P and adenine 14C into DNA by human bone marrow cells in vitro. Br J Cancer. 1954 Jun;8(2):367–379. doi: 10.1038/bjc.1954.38. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LITTAU V. C., ALLFREY V. G., FRENSTER J. H., MIRSKY A. E. ACTIVE AND INACTIVE REGIONS OF NUCLEAR CHROMATIN AS REVEALED BY ELECTRON MICROSCOPE AUTORADIOGRAPHY. Proc Natl Acad Sci U S A. 1964 Jul;52:93–100. doi: 10.1073/pnas.52.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. NASS S., NASS M. M., HENNIX U. DEOXYRIBONUCLEIC ACID IN ISOLATED RAT-LIVER MITOCHONDRIA. Biochim Biophys Acta. 1965 Mar 15;95:426–435. doi: 10.1016/0005-2787(65)90189-9. [DOI] [PubMed] [Google Scholar]
  16. PAINTER R. B. Asynchronous replication of HeLa S3 chromosomal deoxyribonucleic acid. J Biophys Biochem Cytol. 1961 Nov;11:485–488. doi: 10.1083/jcb.11.2.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. PEACOCK W. J. Chromosome duplication and structure as determined by autoradiography. Proc Natl Acad Sci U S A. 1963 Jun;49:793–801. doi: 10.1073/pnas.49.6.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Painter R. B., Jermany D. A., Rasmussen R. E. A method to determine the number of DNA replicating units in cultured mammalian cells. J Mol Biol. 1966 May;17(1):47–56. doi: 10.1016/s0022-2836(66)80093-1. [DOI] [PubMed] [Google Scholar]
  19. Paul J., Gilmour R. S. Template activity of DNA is restricted in chromatin. J Mol Biol. 1966 Mar;16(1):242–244. doi: 10.1016/s0022-2836(66)80276-0. [DOI] [PubMed] [Google Scholar]
  20. Plaut W., Nash D., Fanning T. Ordered replication of DNA in polytene chromosomes of Drosophila melanogaster. J Mol Biol. 1966 Mar;16(1):85–93. doi: 10.1016/s0022-2836(66)80264-4. [DOI] [PubMed] [Google Scholar]
  21. SOLARI A. J. STRUCTURE OF THE CHROMATIN IN SEA URCHIN SPERM. Proc Natl Acad Sci U S A. 1965 Mar;53:503–511. doi: 10.1073/pnas.53.3.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. STANNERS C. P., TILL J. E. DNA synthesis in individual L-strain mouse cells. Biochim Biophys Acta. 1960 Jan 29;37:406–419. doi: 10.1016/0006-3002(60)90496-0. [DOI] [PubMed] [Google Scholar]
  23. STUBBLEFIELD E., MUELLER G. C. Molecular events in the reproduction of animal cells. II. The focalized synthesis of DNA in the chromosomes of HeLa cells. Cancer Res. 1962 Oct;22:1091–1099. [PubMed] [Google Scholar]
  24. Schneider W. C., Kuff E. L. The isolation and some properties of rat liver mitochondrial deoxyribonucleic acid. Proc Natl Acad Sci U S A. 1965 Dec;54(6):1650–1658. doi: 10.1073/pnas.54.6.1650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. TAYLOR J. H. Asynchronous duplication of chromosomes in cultured cells of Chinese hamster. J Biophys Biochem Cytol. 1960 Jun;7:455–464. doi: 10.1083/jcb.7.3.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. TERASIMA T., TOLMACH L. J. Growth and nucleic acid synthesis in synchronously dividing populations of HeLa cells. Exp Cell Res. 1963 Apr;30:344–362. doi: 10.1016/0014-4827(63)90306-9. [DOI] [PubMed] [Google Scholar]
  27. WATSON J. D., CRICK F. H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 1953 Apr 25;171(4356):737–738. doi: 10.1038/171737a0. [DOI] [PubMed] [Google Scholar]
  28. Watanabe I., Okada S. Effects of temperature on growth rate of cultured mammalian cells (L5178Y). J Cell Biol. 1967 Feb;32(2):309–323. doi: 10.1083/jcb.32.2.309. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES