Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1969 Jun;9(6):759–780. doi: 10.1016/s0006-3495(69)86416-7

Isometric Muscle Contraction and the Active State

An Analog Computer

C P S Taylor
PMCID: PMC1367474  PMID: 5815819

Abstract

From Sandow's excitation-contraction coupling hypothesis and reasonable assumptions I obtain the kinetics of the active state, (AS), and thence, via empirical equations for series elastic and contractile components for frog sartorius around 20°C, the tension, P, and dP/dt vs. time. Assumptions: (a) Rate of Ca+2 injection is proportional to the Ca gradient, and a permeability, which increases from zero to a limit as the membrane potential rises above a threshold. (b) Released Ca+2 is bound by the “muscle machinery,” M, and removed by a carrier pump. (c) The AS is proportional to the concentration of Ca-M. The kinetic pattern depends mainly upon the mechanism; the time scale was fixed by the amount of Ca+2 injected. Depending upon the time course and repetition pattern chosen for the action potential, I obtain P and dP/dt, that agree well with experiment, for normal, potentiated, and summed twitches, tetani, and tension redevelopment after a quick release. Upon excitation the AS rises rapidly to 88%, declines thereafter in twitches, but rises slowly in unfused fashion toward 100% in tetani. The knee in dP/dt marks the first maximum in the AS. Potentiators should raise it in tetani as well as in twitches. Velocity and dP/dt show a much higher fusion frequency than P. The model integrates diverse observations. It may be tested by measuring tension and intramyofibrillar Ca+2 under controlled depolarization.

Full text

PDF
759

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashley C. C., Ridgway E. B. Simultaneous recording of membrane potential, calcium transient and tension in single muscle fibers. Nature. 1968 Sep 14;219(5159):1168–1169. doi: 10.1038/2191168a0. [DOI] [PubMed] [Google Scholar]
  2. CLOSE R. The pattern of activation in the sartorius muscle of the frog. J Gen Physiol. 1962 Sep;46:1–18. doi: 10.1085/jgp.46.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Close R. The relation between intrinsic speed of shortening and duration of the active state of muscle. J Physiol. 1965 Oct;180(3):542–559. doi: 10.1113/jphysiol.1965.sp007716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Davies R. E., Kushmerick M. J., Larson R. E. ATP, activation, and the heat of shortening of muscle. Nature. 1967 Apr 8;214(5084):148–151. doi: 10.1038/214148a0. [DOI] [PubMed] [Google Scholar]
  5. Edman K. A., Grieve D. W., Nilsson E. Studies of the excitation-contraction mechanism in the skeletal muscle and the myocardium. Pflugers Arch Gesamte Physiol Menschen Tiere. 1966;290(4):320–334. doi: 10.1007/BF00363311. [DOI] [PubMed] [Google Scholar]
  6. Falk G. Predicted delays in the activation of the contractile system. Biophys J. 1968 May;8(5):608–625. doi: 10.1016/S0006-3495(68)86511-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HILL A. V. The plateau of full activity during a muscle twitch. Proc R Soc Lond B Biol Sci. 1953 Sep;141(905):498–503. doi: 10.1098/rspb.1953.0056. [DOI] [PubMed] [Google Scholar]
  8. JEWELL B. R., WILKIE D. R. An analysis of the mechanical components in frog's striated muscle. J Physiol. 1958 Oct 31;143(3):515–540. doi: 10.1113/jphysiol.1958.sp006075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. JEWELL B. R., WILKIE D. R. The mechanical properties of relaxing muscle. J Physiol. 1960 Jun;152:30–47. doi: 10.1113/jphysiol.1960.sp006467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jobsis F. F., Duffield J. C. Force, shortening, and work in muscular contraction: relative contributions to overall energy utilization. Science. 1967 Jun 9;156(3780):1388–1392. doi: 10.1126/science.156.3780.1388. [DOI] [PubMed] [Google Scholar]
  11. Jöbsis F. F., O'Connor M. J. Calcium release and reabsorption in the sartorius muscle of the toad. Biochem Biophys Res Commun. 1966 Oct 20;25(2):246–252. doi: 10.1016/0006-291x(66)90588-2. [DOI] [PubMed] [Google Scholar]
  12. MACPHERSON L., WILKIE D. R. The duration of the active state in a muscle twitch. J Physiol. 1954 May 28;124(2):292–299. doi: 10.1113/jphysiol.1954.sp005107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. PODOLSKY R. J., COSTANTIN L. L. REGULATION BY CALCIUM OF THE CONTRACTION AND RELAXATION OF MUSCLE FIBERS. Fed Proc. 1964 Sep-Oct;23:933–939. [PubMed] [Google Scholar]
  14. RITCHIE J. M., WILKIE D. R. The effect of previous stimulation on the active state of muscle. J Physiol. 1955 Nov 28;130(2):488–496. doi: 10.1113/jphysiol.1955.sp005422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. SANDOW A. A theory of active state mechanisms in isometric muscular contraction. Science. 1958 Apr 4;127(3301):760–762. doi: 10.1126/science.127.3301.760. [DOI] [PubMed] [Google Scholar]
  16. SANDOW A., PREISER H. MUSCULAR CONTRACTION AS REGULATED BY THE ACTION POTENTIAL. Science. 1964 Dec 11;146(3650):1470–1472. doi: 10.1126/science.146.3650.1470. [DOI] [PubMed] [Google Scholar]
  17. Sandow A. Excitation-contraction coupling in skeletal muscle. Pharmacol Rev. 1965 Sep;17(3):265–320. [PubMed] [Google Scholar]
  18. Sandow A., Taylor S. R., Preiser H. Role of the action potential in excitation-contraction coupling. Fed Proc. 1965 Sep-Oct;24(5):1116–1123. [PubMed] [Google Scholar]
  19. WEBER A., HERZ R., REISS I. ROLE OF CALCIUM IN CONTRACTION AND RELAXATION OF MUSCLE. Fed Proc. 1964 Sep-Oct;23:896–900. [PubMed] [Google Scholar]
  20. Winegrad S. Intracellular calcium movements of frog skeletal muscle during recovery from tetanus. J Gen Physiol. 1968 Jan;51(1):65–83. doi: 10.1085/jgp.51.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES