Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1969 Oct;9(10):1195–1205. doi: 10.1016/S0006-3495(69)86445-3

The Electrical Capacitance of Phospholipid Membranes

Shinpei Ohki
PMCID: PMC1367513  PMID: 5387906

Abstract

As one of the methods of finding out the structural change of lipid bilayers due to change of environmental solution, the capacitances of phosphatidyl choline (egg lecithin) and phosphatidyl serine (bovine brain) bilayer membranes in solutions of various pH and salt contents were measured. It was found that the capacitance of the bilayer depended upon pH and salt content. The capacitance had a minimum value around pH 4 for phosphatidyl choline and around pH 3-4 for phosphatidyl serine bilayers, respectively. The value of the capacitance increased as the pH of the solution became lower or higher. As the concentration of cholesterol in the phosphatidyl choline bilayer increased, the capacitance increased and reached a saturation value. A DC voltage across the phosphatidyl choline bilayer did not affect the value of the capacitance practically.

Full text

PDF
1195

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babakov A. V., Ermishkin L. N., Liberman E. A. Influence of electric field on the capacity of phospholipid membranes. Nature. 1966 May 28;210(5039):953–955. doi: 10.1038/210953b0. [DOI] [PubMed] [Google Scholar]
  2. Bruckdorfer K. R., Graham J. M., Green C. The incorporation of steroid molecules into lecithin sols, beta-lipoproteins and cellular membranes. Eur J Biochem. 1968 May;4(4):512–518. doi: 10.1111/j.1432-1033.1968.tb00242.x. [DOI] [PubMed] [Google Scholar]
  3. Hanai T., Haydon D. A., Taylor J. The influence of lipid composition and of some adsorbed proteins on the capacitance of black hydrocarbon membranes. J Theor Biol. 1965 Nov;9(3):422–432. doi: 10.1016/0022-5193(65)90041-x. [DOI] [PubMed] [Google Scholar]
  4. Ohki S., Goldup A. Influence of pH, sodium and calcium ions on the d.c. resistance of black egg lecithin-cholesterol films. Nature. 1968 Feb 3;217(5127):458–459. doi: 10.1038/217458a0. [DOI] [PubMed] [Google Scholar]
  5. Ohki S. Properties of lipid bilayer membranes. Determination of membrane thickness. J Theor Biol. 1969 Apr;23(1):158–168. doi: 10.1016/0022-5193(69)90073-3. [DOI] [PubMed] [Google Scholar]
  6. Papahadjopoulos D., Miller N. Phospholipid model membranes. I. Structural characteristics of hydrated liquid crystals. Biochim Biophys Acta. 1967 Sep 9;135(4):624–638. doi: 10.1016/0005-2736(67)90094-6. [DOI] [PubMed] [Google Scholar]
  7. Papahadjopoulos D. Surface properties of acidic phospholipids: interaction of monolayers and hydrated liquid crystals with uni- and bi-valent metal ions. Biochim Biophys Acta. 1968 Sep 17;163(2):240–254. doi: 10.1016/0005-2736(68)90103-x. [DOI] [PubMed] [Google Scholar]
  8. Rosen D., Sutton A. M. The effects of a direct current potential bias on the electrical properties of bimolecular lipid membranes. Biochim Biophys Acta. 1968 Sep 17;163(2):226–233. doi: 10.1016/0005-2736(68)90101-6. [DOI] [PubMed] [Google Scholar]
  9. Tien H. T., Diana A. L. Black lipid membranes in aqueous media: the effect of salts on electrical properties. J Colloid Interface Sci. 1967 Jul;24(3):287–296. doi: 10.1016/0021-9797(67)90253-6. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES