Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1964 Sep;4(5):387–399. doi: 10.1016/s0006-3495(64)86790-4

The Repolarization Phase of the Cardiac Ventricular Action Potential

A Time-Dependent System of Membrane Conductances

E A Johnson, J Tille
PMCID: PMC1367526  PMID: 14205508

Abstract

A system for the generation of the repolarization phase of the ventricular action potential is described. The system is based on time-dependent changes in membrane conductance to sodium and potassium ions. However, the changes in conductance during an action potential retain a degree of voltage dependence through the initial conditions which depend on previous depolarizations of the membrane. The equations describing the system were solved with an analog computer and various action potential forms are reproduced. The effects of hyperpolarizing and depolarizing current applied during an action potential are investigated. The changes in shape of an action potential after a change in the rate of stimulation show partial agreement with previous experimental findings. The applicability of time-dependent and voltage-dependent systems for the generation of the repolarization phase of the ventricular action potential is discussed.

Full text

PDF
387

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brady A. J., Woodbury J. W. The sodium-potassium hypothesis as the basis of electrical activity in frog ventricle. J Physiol. 1960 Dec;154(2):385–407. doi: 10.1113/jphysiol.1960.sp006586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CARMELIET E. E. Chloride ions and the membrane potential of Purkinje fibres. J Physiol. 1961 Apr;156:375–388. doi: 10.1113/jphysiol.1961.sp006682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CRANEFIELD P. F., HOFFMAN B. F. Propagated repolarization in heart muscle. J Gen Physiol. 1958 Mar 20;41(4):633–649. doi: 10.1085/jgp.41.4.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DRAPER M. H., WEIDMANN S. Cardiac resting and action potentials recorded with an intracellular electrode. J Physiol. 1951 Sep;115(1):74–94. doi: 10.1113/jphysiol.1951.sp004653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. GIBBS C. L., JOHNSON E. A. Effect of changes in frequency of stimulation upon rabbit ventricular action potential. Circ Res. 1961 Jan;9:165–170. doi: 10.1161/01.res.9.1.165. [DOI] [PubMed] [Google Scholar]
  6. GIBBS C. L., JOHNSON E. A., TILLE J. A QUANTITATIVE DESCRIPTION OF THE RELATIONSHIP BETWEEN THE AREA OF RABBIT VENTRICULAR ACTION POTENTIALS AND THE PATTERN OF STIMULATION. Biophys J. 1963 Nov;3:433–458. doi: 10.1016/s0006-3495(63)86830-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. GIBBS C. L., JOHNSON E. A., TILLE J. AN EXAMPLE OF INFORMATION RETENTION IN RABBIT VENTRICULAR MUSCLE FIBRES. Biophys J. 1964 Jul;4:329–333. doi: 10.1016/s0006-3495(64)86786-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HALL A. E., HUTTER O. F., NOBLE D. Current-voltage relations of Purkinje fibres in sodium-deficient solutions. J Physiol. 1963 Apr;166:225–240. doi: 10.1113/jphysiol.1963.sp007102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. JOHNSON E. A., TILLE J. Changes in polarisation resistance during the repolarisation phase of the rabbit ventricular action potential. Aust J Exp Biol Med Sci. 1960 Dec;38:509–513. doi: 10.1038/icb.1960.56. [DOI] [PubMed] [Google Scholar]
  11. JOHNSON E. A., TILLE J. Evidence for independence of voltage of the membrane conductance of rabbit ventricular fibres. Nature. 1961 Nov 18;192:663–664. doi: 10.1038/192663a0. [DOI] [PubMed] [Google Scholar]
  12. JOHNSON E. A., TILLE J., WILSON L. The effect of a change in shape of the cardiac action potential on the ionic conductances. Aust J Exp Biol Med Sci. 1961 Apr;39:179–185. doi: 10.1038/icb.1961.18. [DOI] [PubMed] [Google Scholar]
  13. JOHNSON E. A., WILSON L. Membrane ionic permeabilities during the cardiac action potential. Aust J Exp Biol Med Sci. 1962 Apr;40:93–104. doi: 10.1038/icb.1962.12. [DOI] [PubMed] [Google Scholar]
  14. NOBLE D. A modification of the Hodgkin--Huxley equations applicable to Purkinje fibre action and pace-maker potentials. J Physiol. 1962 Feb;160:317–352. doi: 10.1113/jphysiol.1962.sp006849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. NOBLE D. Cardiac action and pacemaker potentials based on the Hodgkin-Huxley equations. Nature. 1960 Nov 5;188:495–497. doi: 10.1038/188495b0. [DOI] [PubMed] [Google Scholar]
  16. NOBLE D. Cardiac action and pacemaker potentials based on the Hodgkin-Huxley equations. Nature. 1960 Nov 5;188:495–497. doi: 10.1038/188495b0. [DOI] [PubMed] [Google Scholar]
  17. TRAUTWEIN W., KASSEBAUM D. G. On the mechanism of spontaneous impulse generation in the pacemaker of the heart. J Gen Physiol. 1961 Nov;45:317–330. doi: 10.1085/jgp.45.2.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. WEIDMANN S. Effect of current flow on the membrane potential of cardiac muscle. J Physiol. 1951 Oct 29;115(2):227–236. doi: 10.1113/jphysiol.1951.sp004667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. WEIDMANN S. The effect of the cardiac membrane potential on the rapid availability of the sodium-carrying system. J Physiol. 1955 Jan 28;127(1):213–224. doi: 10.1113/jphysiol.1955.sp005250. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES