Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1969 Sep;9(9):1073–1099. doi: 10.1016/S0006-3495(69)86437-4

Application of Electron Diffraction to Biological Electron Microscopy

Robert M Glaeser, Gareth Thomas
PMCID: PMC1367545  PMID: 4896898

Abstract

Three methods by which electron diffraction may be applied to problems in electron microscopy are discussed from a fundamental point of view, and experimental applications with biological specimens are demonstrated for each case. It is shown that wide-angle electron diffraction provides valuable information for evaluating specimen damage that can occur either during specimen preparation or while in the electron beam. Dark-field electron microscopy can be used both to enhance the image contrast and to provide highly restricted and therefore highly specific information about the object. Low-angle electron diffraction provides quantitative information about the object structure in the range from 20 A to ∼ 1000 A. Lowangle electron diffraction also demonstrates the important role of Fourier contrast with biological specimens, which are usually characterized by structural features with dimensions of 20 A or larger.

Full text

PDF
1073

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Fischbach F. A., Anderegg J. W. An x-ray scattering study of ferritin and apoferritin. J Mol Biol. 1965 Dec;14(2):458–473. doi: 10.1016/s0022-2836(65)80196-6. [DOI] [PubMed] [Google Scholar]
  2. Glaeser R. M., Hayes T., Mel H., Tobias C. Membrane structure of OsO4-fixed erythrocytes viewed "face on" by electron microscope techniques. Exp Cell Res. 1966 Jun;42(3):467–477. doi: 10.1016/0014-4827(66)90260-6. [DOI] [PubMed] [Google Scholar]
  3. HUXLEY H. E. X-ray analysis and the problem of muscle. Proc R Soc Lond B Biol Sci. 1953 Mar 11;141(902):59–62. doi: 10.1098/rspb.1953.0017. [DOI] [PubMed] [Google Scholar]
  4. Haas D. J. Preliminary studies on the denaturation of cross-linked lysozyme crystals. Biophys J. 1968 May;8(5):549–555. doi: 10.1016/S0006-3495(68)86507-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Murray R. T., Ferrier R. P. Biological applications of electron diffraction. J Ultrastruct Res. 1967 Dec;21(5):361–377. doi: 10.1016/s0022-5320(67)80146-1. [DOI] [PubMed] [Google Scholar]
  6. Pease D. C. Eutectic ethylene glycol and pure propylene glycol as substituting media for the dehydration of frozen tissue. J Ultrastruct Res. 1967 Nov;21(1):75–97. doi: 10.1016/s0022-5320(67)80007-8. [DOI] [PubMed] [Google Scholar]
  7. Pease D. C. The preservation of unfixed cytological detail by dehydration with "inert" agents. J Ultrastruct Res. 1966 Feb;14(3):356–378. doi: 10.1016/s0022-5320(66)80054-0. [DOI] [PubMed] [Google Scholar]
  8. SAGE H. J., SINGER S. J. The properties of bovine pancreatic ribonuclease in ethylene glycol solution. Biochemistry. 1962 Mar;1:305–317. doi: 10.1021/bi00908a018. [DOI] [PubMed] [Google Scholar]
  9. TANFORD C., BUCKLEY C. E., 3rd, DE P. K., LIVELY E. P. Effect of ethylene glycol on the conformation of gama-globulin and beta-lactoglobulin. J Biol Chem. 1962 Apr;237:1168–1171. [PubMed] [Google Scholar]
  10. VALENTINE R. C. SUB-UNITS OF THE CATALASE MOLECULE SEEN BY ELECTRON MICROSCOPY. Nature. 1964 Dec 26;204:1262–1264. doi: 10.1038/2041262b0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES