Abstract
The steps of normal bacterial conjugation (union, transfer, integration and segregation) are described in analytical terms. Only two parameters are utilized: νmt0, the probability of interruption of transfer of the male chromosome per unit chromosomal distance; and νr0, the probability per unit chromosomal distance of a recombinational event. Experimentally these two parameters have the same value (0.06 min-1 or 10-6 per nucleotide pair). Irradiation of the donor parent prior to mating increases the transfer parameter (νmt = νmt0 + σmtD) and a complete description of the radiation response of recombinant production is obtained by a consideration of the single parameter σmt. Irradiation of the recipient parent prior to mating increases the recombination parameter (νr = νr0 + σrD) and a complete description of the radiation response of recombinant production is obtained by the addition of the parameter σr. Experimentally σmt and σr are found to have the same value, approximately 0.004 krad-1 min-1 for X-irradiation. It is thus possible to describe mathematically the behavior of the unperturbed mating system by a single parameter ν0; a single additional parameter σ is adequate to describe the behavior of the system when either parental type is irradiated prior to mating. The unexpected observation that νmt and νr have the same value suggests that common molecular mechanisms are involved in the transfer and integration steps.
Full text
PDF





























Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brinton C. C., Jr The structure, function, synthesis and genetic control of bacterial pili and a molecular model for DNA and RNA transport in gram negative bacteria. Trans N Y Acad Sci. 1965 Jun;27(8):1003–1054. doi: 10.1111/j.2164-0947.1965.tb02342.x. [DOI] [PubMed] [Google Scholar]
- CLARK A. J., ADELBERG E. A. Bacterial conjugation. Annu Rev Microbiol. 1962;16:289–319. doi: 10.1146/annurev.mi.16.100162.001445. [DOI] [PubMed] [Google Scholar]
- FUERST C. R., JACOB F., WOLLMAN E. L. Détermination de liaisons génétiques, chez Escherichia coli K 12, a l'aide de radiophosphore. C R Hebd Seances Acad Sci. 1956 Dec 17;243(25):2162–2164. [PubMed] [Google Scholar]
- HAYES W. The kinetics of the mating process in Escherichia coli. J Gen Microbiol. 1957 Feb;16(1):97–119. doi: 10.1099/00221287-16-1-97. [DOI] [PubMed] [Google Scholar]
- HAYES W. The mechanism of genetic recombination in Escherichia coli. Cold Spring Harb Symp Quant Biol. 1953;18:75–93. doi: 10.1101/sqb.1953.018.01.016. [DOI] [PubMed] [Google Scholar]
- Joset F., Wood T. H. Modification of conjugation in Escherichia coli K-12 by ultraviolet irradiation. Genetics. 1966 Feb;53(2):343–356. doi: 10.1093/genetics/53.2.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KRISCH R. E., WOOD T. H. MODIFICATION OF GENETIC RECOMBINATION OF ESCHERICHIA COLI K-12 PRODUCED BY P32 DECAY IN THE FEMALE. Radiat Res. 1965 Jul;25:601–607. [PubMed] [Google Scholar]
- Krisch R. Effects on genetic recombination of Escherichia coli K 12 produced by P-32 decay in the Hfr male. Genet Res. 1965 Nov;6(3):454–468. doi: 10.1017/s001667230000433x. [DOI] [PubMed] [Google Scholar]
- LOW B., WOOD T. H. A QUICK AND EFFICIENT METHOD FOR INTERRUPTION OF BACTERIAL CONJUGATION. Genet Res. 1965 Jul;6:300–303. doi: 10.1017/s001667230000416x. [DOI] [PubMed] [Google Scholar]
- Low B. Low recombination frequency for markers very near the origin in conjugation in E. coli. Genet Res. 1965 Nov;6(3):469–473. doi: 10.1017/s0016672300004341. [DOI] [PubMed] [Google Scholar]
- TAYLOR A. L., THOMAN M. S. THE GENETIC MAP OF ESCHERICHIA COLI K-12. Genetics. 1964 Oct;50:659–677. doi: 10.1093/genetics/50.4.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor A. L., Trotter C. D. Revised linkage map of Escherichia coli. Bacteriol Rev. 1967 Dec;31(4):332–353. doi: 10.1128/br.31.4.332-353.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verhoef C., de Haan P. G. Genetic recombination in Escherichia coli. I. Relation between linkage of unselected markers and map distance. Mutat Res. 1966 Apr;3(2):101–110. doi: 10.1016/0027-5107(66)90023-6. [DOI] [PubMed] [Google Scholar]
- WOOD T. H., MARCOVICH H. EFFECTS ON GENETIC RECOMBINATION OF ESCHERICHIA COLI K-12 PRODUCED BY X-RAY AND ALPHA-PARTICLE IRRADIATION OF THE FEMALE. Genetics. 1964 May;49:779–786. doi: 10.1093/genetics/49.5.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walmsley R. H. The general theory of mapping functions for random genetic recombination. Biophys J. 1969 Mar;9(3):421–431. doi: 10.1016/S0006-3495(69)86394-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wood T. H. Effects of temperature, agitation, and donor strain on chromosome transfer in Escherichia coli K-12. J Bacteriol. 1968 Dec;96(6):2077–2084. doi: 10.1128/jb.96.6.2077-2084.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu T. T. Recombination frequencies of proximal markers in bacterial conjugation. J Theor Biol. 1967 Oct;17(1):40–46. doi: 10.1016/0022-5193(67)90018-5. [DOI] [PubMed] [Google Scholar]
