Abstract
A method is described for the determination of the electrophoretic mobility of single, isolated, intact, giant axons of squid and lobster. In normal physiological solutions, the surface of hydrodynamic shear of these axons is negatively charged. The lower limit of the estimated surface charge density is -1.9 × 10-8 coul cm-2 for squid axons, -4.2 × 10-8 coul cm-2 for lobster axons. The electrophoretic mobility of squid axons decreases greatly when the applied transaxial electric field is made sufficiently intense; action potential propagation is blocked irreversibly by transaxial electric fields of the same intensity. The squid axon recovers its mobility hours later and is then less affected by transaxial fields. Eventually, a state is reached in which the transaxial field irreversibly reverses the sign of the surface charge. In contrast, there is no obvious effect of electric field on the mobility of lobster axons. The mobility of lobster axons becomes undetectable in the presence of Th4+ at a concentration which blocks the action potential, and in the presence of La3+ at a concentration which does not affect propagation. Quinine does not alter lobster axon mobility at a concentration which blocks action potential conduction. Replacement of extracellular Na+ by K+ is without effect upon lobster axon mobility. The electrophysiological implications of the results are discussed.
Full text
PDF



















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BRINLEY F. J., Jr, MULLINS L. J. ION FLUXES AND TRANSFERENCE NUMBER IN SQUID AXONS. J Neurophysiol. 1965 May;28:526–544. doi: 10.1152/jn.1965.28.3.526. [DOI] [PubMed] [Google Scholar]
- BRINLEY F. J., Jr SODIUM, POTASSIUM, AND CHLORIDE CONCENTRATIONS AND FLUXES IN THE ISOLATED GIANT AXON OF HOMARUS. J Neurophysiol. 1965 Jul;28:742–772. doi: 10.1152/jn.1965.28.4.742. [DOI] [PubMed] [Google Scholar]
- CALDWELL P. C., KEYNES R. D. The permeability of the squid giant axon to radioactive potassium and chloride ions. J Physiol. 1960 Nov;154:177–189. doi: 10.1113/jphysiol.1960.sp006572. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cole W. H. A PERFUSING SOLUTION FOR THE LOBSTER (HOMARUS) HEART AND THE EFFECTS OF ITS CONSTITUENT IONS ON THE HEART. J Gen Physiol. 1941 Sep 20;25(1):1–6. doi: 10.1085/jgp.25.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elul R. Fixed charge in the cell membrane. J Physiol. 1967 Apr;189(3):351–365. doi: 10.1113/jphysiol.1967.sp008173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HILL D. K. The volume change resulting from stimulation of a giant nerve fibre. J Physiol. 1950 Oct 16;111(3-4):304–327. doi: 10.1113/jphysiol.1950.sp004481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., HUXLEY A. F. Movement of radioactive potassium and membrane current in a giant axon. J Physiol. 1953 Aug;121(2):403–414. doi: 10.1113/jphysiol.1953.sp004954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NEVIS A. H. Water transport in invertebrate peripheral nerve fibers. J Gen Physiol. 1958 May 20;41(5):927–958. doi: 10.1085/jgp.41.5.927. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SPYROPOULOS C. S. The effects of hydrostatic pressure upon the normal and narcotized nerve fiber. J Gen Physiol. 1957 Jul 20;40(6):849–857. doi: 10.1085/jgp.40.6.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TASAKI I. Permeability of squid axon membrane to various ions. J Gen Physiol. 1963 Mar;46:755–772. doi: 10.1085/jgp.46.4.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TASAKI I., TEORELL T., SPYROPOULOS C. S. Movement of radioactive tracers across squid axon membrane. Am J Physiol. 1961 Jan;200:11–22. doi: 10.1152/ajplegacy.1961.200.1.11. [DOI] [PubMed] [Google Scholar]
- TEORELL T. Electrokinetic membrane processes in relation to properties excitable tissues. II. Some theoretical considerations. J Gen Physiol. 1959 Mar 20;42(4):847–863. doi: 10.1085/jgp.42.4.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takata M., Pickard W. F., Lettvin J. Y., Moore J. W. Ionic conductance changes in lobster axon membrane when lanthanum is substituted for calcium. J Gen Physiol. 1966 Nov;50(2):461–471. doi: 10.1085/jgp.50.2.461. [DOI] [PMC free article] [PubMed] [Google Scholar]