Abstract
The central purpose of this paper is to elucidate in a well defined system the meaning of certain phenomena and concepts associated with the active transport of ions. To this end a specific model for a carrier system which actively transports a single ionic species is analyzed and discussed in detail. It is assumed in this model that the carrier-mediated ionic transport occurs in regions of the membrane physically separate from those regions in which free ionic movement takes place,—coupling between the active and passive regions of the membrane occurring through local current flows. The model is seen to display the following characteristics: (a) Starting from identical solutions on the two sides of the membrane, there is produced a redistribution of ions; (b) with identical solutions on the two sides of the membrane there exists a potential difference across the membrane, i.e., the “pump” is electrogenic; (c) the “short circuit” current for symmetrical solutions is equal to the flux of the neutral ion carrier complex; (d) the rate of active transport (and hence of metabolism) is dependent on the ionic concentrations in the surrounding solutions. Throughout the paper comparison is made between features of the model and properties displayed by biological active transport systems, but there is no claim of an identity between the two.
Full text
PDF



















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- CONWAY E. J. Nature and significance of concentration relations of potassium and sodium ions in skeletal muscle. Physiol Rev. 1957 Jan;37(1):84–132. doi: 10.1152/physrev.1957.37.1.84. [DOI] [PubMed] [Google Scholar]
- CURRAN P. F., SOLOMON A. K. Ion and water fluxes in the ileum of rats. J Gen Physiol. 1957 Sep 20;41(1):143–168. doi: 10.1085/jgp.41.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Finkelstein A., Mauro A. Equivalent Circuits as Related to Ionic Systems. Biophys J. 1963 May;3(3):215–237. doi: 10.1016/s0006-3495(63)86817-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., KEYNES R. D. Active transport of cations in giant axons from Sepia and Loligo. J Physiol. 1955 Apr 28;128(1):28–60. doi: 10.1113/jphysiol.1955.sp005290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUXLEY A. F., STAMPFLI R. Effect of potassium and sodium on resting and action potentials of single myelinated nerve fibers. J Physiol. 1951 Feb;112(3-4):496–508. doi: 10.1113/jphysiol.1951.sp004546. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KEYNES R. D. CHLORIDE IN THE SQUID GIANT AXON. J Physiol. 1963 Dec;169:690–705. doi: 10.1113/jphysiol.1963.sp007289. [DOI] [PMC free article] [PubMed] [Google Scholar]
