Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1970 Mar;10(3):237–245. doi: 10.1016/S0006-3495(70)86296-8

Two Forms of Repair of DNA in Mammalian Cells following Irradiation

M M Elkind, C Kamper
PMCID: PMC1367680  PMID: 5461576

Abstract

When Chinese hamster cells are lysed on top of an alkaline sucrose gradient, in time a fairly discrete DNA-containing molecular species is released from an apparently more complex material. Small doses of X-radiation speed the resolution of this complex while large doses degrade the material released from it. Incubation after irradiation reverses both effects.

Full text

PDF
237

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURGI E., HERSHEY A. D. Sedimentation rate as a measure of molecular weight of DNA. Biophys J. 1963 Jul;3:309–321. doi: 10.1016/s0006-3495(63)86823-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. EAGLE H. Nutrition needs of mammalian cells in tissue culture. Science. 1955 Sep 16;122(3168):501–514. doi: 10.1126/science.122.3168.501. [DOI] [PubMed] [Google Scholar]
  3. ELKIND M. M., SUTTON H. Radiation response of mammalian cells grown in culture. 1. Repair of X-ray damage in surviving Chinese hamster cells. Radiat Res. 1960 Oct;13:556–593. [PubMed] [Google Scholar]
  4. ELKIND M. M., SUTTON H. X-ray damage and recovery in mammalian cells in culture. Nature. 1959 Oct 24;184:1293–1295. doi: 10.1038/1841293a0. [DOI] [PubMed] [Google Scholar]
  5. Elkind M. M., Moses W. B., Sutton-Gilbert H. Radiation response of mammalian cells grown in culture. VI. Protein, DNA, and RNA inhibition during the repair of x-ray damage. Radiat Res. 1967 May;31(1):156–173. [PubMed] [Google Scholar]
  6. Elkind M. M., Sutton-Gilbert H., Moses W. B., Kamper C. Sub-lethal and lethal radiation damage. Nature. 1967 Jun 10;214(5093):1088–1092. doi: 10.1038/2141088a0. [DOI] [PubMed] [Google Scholar]
  7. Huberman J. A., Riggs A. D. Autoradiography of chromosomal DNA fibers from Chinese hamster cells. Proc Natl Acad Sci U S A. 1966 Mar;55(3):599–606. doi: 10.1073/pnas.55.3.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Huberman J. A., Riggs A. D. On the mechanism of DNA replication in mammalian chromosomes. J Mol Biol. 1968 Mar 14;32(2):327–341. doi: 10.1016/0022-2836(68)90013-2. [DOI] [PubMed] [Google Scholar]
  9. Humphrey R. M., Steward D. L., Sedita B. A. DNA-strand breaks and rejoining following exposure of synchronized Chinese hamster cells to ionizing radiations. Mutat Res. 1968 Nov-Dec;6(3):459–465. doi: 10.1016/0027-5107(68)90063-8. [DOI] [PubMed] [Google Scholar]
  10. Lehmann A. R., Ormerod M. G. Artefact in the measurement of the molecular weight of pulse labelled DNA. Nature. 1969 Mar 15;221(5185):1053–1056. doi: 10.1038/2211053b0. [DOI] [PubMed] [Google Scholar]
  11. Lett J. T., Caldwell I., Dean C. J., Alexander P. Rejoining of x-ray induced breaks in the DNA of leukaemia cells. Nature. 1967 May 20;214(5090):790–792. doi: 10.1038/214790a0. [DOI] [PubMed] [Google Scholar]
  12. Lohman P. H. Induction and rejoining of breaks in the deoxyribonucleic acid of human cells irradiated at various phases of the cell cycle. Mutat Res. 1968 Nov-Dec;6(3):449–458. doi: 10.1016/0027-5107(68)90062-6. [DOI] [PubMed] [Google Scholar]
  13. McGrath R. A., Williams R. W. Reconstruction in vivo of irradiated Escherichia coli deoxyribonucleic acid; the rejoining of broken pieces. Nature. 1966 Oct 29;212(5061):534–535. doi: 10.1038/212534a0. [DOI] [PubMed] [Google Scholar]
  14. PUCK T. T., MARCUS P. I., CIECIURA S. J. Clonal growth of mammalian cells in vitro; growth characteristics of colonies from single HeLa cells with and without a feeder layer. J Exp Med. 1956 Feb 1;103(2):273–283. doi: 10.1084/jem.103.2.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. RUBENSTEIN I., THOMAS C. A., Jr, HERSHEY A. D. The molecular weights of T2 bacteriophage DNA and its first and second breakage products. Proc Natl Acad Sci U S A. 1961 Aug;47:1113–1122. doi: 10.1073/pnas.47.8.1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. STUDIER F. W. SEDIMENTATION STUDIES OF THE SIZE AND SHAPE OF DNA. J Mol Biol. 1965 Feb;11:373–390. doi: 10.1016/s0022-2836(65)80064-x. [DOI] [PubMed] [Google Scholar]
  17. Sasaki M. S., Norman A. DNA fibres from human lymphocyte nuclei. Exp Cell Res. 1966 Nov-Dec;44(2):642–645. doi: 10.1016/0014-4827(66)90474-5. [DOI] [PubMed] [Google Scholar]
  18. Taylor J. H. Rates of chain growth and units of replication in DNA of mammalian chromosomes. J Mol Biol. 1968 Feb 14;31(3):579–594. doi: 10.1016/0022-2836(68)90429-4. [DOI] [PubMed] [Google Scholar]
  19. Terasima T., Tsuboi A. Mammalian cell DNA isolated with minimal shearing. A sensitive system for detecting strand breaks by radiation. Biochim Biophys Acta. 1969 Jan 21;174(1):309–314. [PubMed] [Google Scholar]
  20. Veatch W., Okada S. Radiation-induced breaks of DNA in cultured mammalian cells. Biophys J. 1969 Mar;9(3):330–346. doi: 10.1016/S0006-3495(69)86390-3. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES