Abstract
In a study of integration at the single neuron level, the relationships between the postsynaptic membrane potential and the presynaptic spike train were analyzed. Fluctuations in membrane potential of neurons in the visceral ganglion of Aplysia were measured and described by histograms. The histogram estimates the probability density function of the membrane potential. Comparisons were made among histograms when there was no synaptic input, and when there was a single input in which variations were made in the PSP (postsynaptic potential) sign, i.e. excitatory or inhibitory, and arrival statistics, e.g. slow or fast, regular, Poisson-like, or patterned. This was examined in cells where the membrane potential was constant and in cells in which there was spontaneous pacemaker activity. The form of the histogram depended on whether the neuron was spontaneously quiescent or a pacemaker, or whether it received presynaptic input and, if it did, on the sign and temporal characteristics of such input. From such histograms the mean firing rate of output spike trains can be predicted; additional information of a temporal nature is required, however, to predict features of the interval structure of the output train. Suggestions are made concerning the way the nervous system might utilize the information summarized in the membrane potential histogram.
Full text
PDF


















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ADOLPH A. R. SPONTANEOUS SLOW POTENTIAL FLUCTUATIONS IN THE LIMULUS PHOTORECEPTOR. J Gen Physiol. 1964 Nov;48:297–322. doi: 10.1085/jgp.48.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BROCK L. G., COOMBS J. S., ECCLES J. C. The recording of potentials from motoneurones with an intracellular electrode. J Physiol. 1952 Aug;117(4):431–460. doi: 10.1113/jphysiol.1952.sp004759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Derksen H. E. Axon membrane voltage fluctuations. Acta Physiol Pharmacol Neerl. 1965;13(4):373–466. [PubMed] [Google Scholar]
- Derksen H. E., Verveen A. A. Fluctuations of resting neural membrane potential. Science. 1966 Mar 18;151(3716):1388–1389. doi: 10.1126/science.151.3716.1388. [DOI] [PubMed] [Google Scholar]
- FATT P., KATZ B. Spontaneous subthreshold activity at motor nerve endings. J Physiol. 1952 May;117(1):109–128. [PMC free article] [PubMed] [Google Scholar]
- Granit R., Kernell D., Lamarre Y. Algebraical summation in synaptic activation of motoneurones firing within the 'primary range' to injected currents. J Physiol. 1966 Nov;187(2):379–399. doi: 10.1113/jphysiol.1966.sp008097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KATZ B., MILEDI R. A STUDY OF SPONTANEOUS MINIATURE POTENTIALS IN SPINAL MOTONEURONES. J Physiol. 1963 Sep;168:389–422. doi: 10.1113/jphysiol.1963.sp007199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore G. P., Perkel D. H., Segundo J. P. Statistical analysis and functional interpretation of neuronal spike data. Annu Rev Physiol. 1966;28:493–522. doi: 10.1146/annurev.ph.28.030166.002425. [DOI] [PubMed] [Google Scholar]
- Perkel D. H., Gerstein G. L., Moore G. P. Neuronal spike trains and stochastic point processes. I. The single spike train. Biophys J. 1967 Jul;7(4):391–418. doi: 10.1016/S0006-3495(67)86596-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STEIN R. B. A THEORETICAL ANALYSIS OF NEURONAL VARIABILITY. Biophys J. 1965 Mar;5:173–194. doi: 10.1016/s0006-3495(65)86709-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Segundo J. P., Perkel D. H., Wyman H., Hegstad H., Moore G. P. Input-output relations in computer-simulated nerve cells. Influence of the statistical properties, strength, number and inter-dependence of excitatory pre-synaptic terminals. Kybernetik. 1968 May;4(5):157–171. doi: 10.1007/BF00289038. [DOI] [PubMed] [Google Scholar]
- TAUC L. Site of origin and propagation in spike in the giant neuron of Aplysia. J Gen Physiol. 1962 Jul;45:1077–1097. doi: 10.1085/jgp.45.6.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verveen A. A., Derksen H. E., Schick K. L. Voltage fluctuations of neural membrane. Nature. 1967 Nov 11;216(5115):588–589. doi: 10.1038/216588a0. [DOI] [PubMed] [Google Scholar]
