Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1970 May;10(5):423–444. doi: 10.1016/S0006-3495(70)86310-X

A Theoretical Examination of Ionic Interactions between Neural and Non-Neural Membranes

Robert M Lebovitz
PMCID: PMC1367775  PMID: 4314730

Abstract

Evidence from electron microscopy indicates that the separation between adjacent membranes of the central nervous system (CNS) is less than 500 A and perhaps as small as 100-250 A. The rapid K+ efflux associated with the neural action potential may therefore be sufficient to affect the local extracellular potassium concentration and, via their partial dependence upon the potassium equilibrium potential, alter the electrical states of nearby neural and glial membranes. This new concept of a transient and local depolarizing “ionic interaction” between active and inactive membranes of the CNS is here examined theoretically and its magnitude calculated as a function of (a) the intermembrane separation, (b) the membranes' electrochemical characteristics, and (c) the rate at which K+ can diffuse away from the vicinity of the active (neural) membrane. My results indicate that the interaction is in the millivolt range and therefore significant in the modulation of postsynaptic and presynaptic information processing; in particular configurations the postulated interaction alone may be suprathreshold. Membrane noise and local synchrony in groups of neurons may reflect these local, K+-mediated interactions. The transient ionic interaction between active neural and nearby glial membrane is also in the millivolt range; however, the relevance of neuroglia to neuronal function is obscure. Certain pathological states, such as seizure and spreading depression, have an obvious phenomenological correspondence to the results presented here and are briefly discussed.

Full text

PDF
423

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ATKINSON J. R., WARD A. A., Jr INTRACELLULAR STUDIES OF CORTICAL NEURONS IN CHRONIC EPILEPTOGENIC FOCI IN THE MONKEY. Exp Neurol. 1964 Oct;10:285–295. doi: 10.1016/0014-4886(64)90001-9. [DOI] [PubMed] [Google Scholar]
  2. BLACKMAN J. G., GINSBORG B. L., RAY C. Some effects of changes in ionic concentration on the action potential of sympathetic ganglion cells in the frog. J Physiol. 1963 Jul;167:374–388. doi: 10.1113/jphysiol.1963.sp007156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BLACKSTAD T. W., DAHL H. A. Quantitative evaluation of structures in contact with neuronal somata. An electron microscopic study on the fascia dentata of the rat. Acta Morphol Neerl Scand. 1962;4:329–343. [PubMed] [Google Scholar]
  4. CUMMINS J., HYDEN H. Adenosine triphosphate levels and adenosine triphosphatases in neurons, glia and neuronal membranes of the vestibular nucleus. Biochim Biophys Acta. 1962 Jul 2;60:271–283. doi: 10.1016/0006-3002(62)90403-1. [DOI] [PubMed] [Google Scholar]
  5. ECCLES J. C., JAEGER J. C. The relationship between the mode of operation and the dimensions of the junctional regions at synapses and motor end-organs. Proc R Soc Lond B Biol Sci. 1958 Jan 1;148(930):38–56. doi: 10.1098/rspb.1958.0003. [DOI] [PubMed] [Google Scholar]
  6. ECCLES J. C., KOSTYUK P. G., SCHMIDT R. F. Presynaptic inhibition of the central actions of flexor reflex afferents. J Physiol. 1962 May;161:258–281. doi: 10.1113/jphysiol.1962.sp006885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. ECCLES J. C., KOSTYUK P. G., SCHMIDT R. F. The effect of electric polarization of the spinal cord on central afferent fibres and on their excitatory synaptic action. J Physiol. 1962 Jun;162:138–150. doi: 10.1113/jphysiol.1962.sp006920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Enright J. T. The spontaneous neuron subject to tonic stimulation. J Theor Biol. 1967 Jul;16(1):54–77. doi: 10.1016/0022-5193(67)90053-7. [DOI] [PubMed] [Google Scholar]
  9. FRANKENHAEUSER B., HODGKIN A. L. The after-effects of impulses in the giant nerve fibres of Loligo. J Physiol. 1956 Feb 28;131(2):341–376. doi: 10.1113/jphysiol.1956.sp005467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. GALAMBOS R. A glia-neural theory of brain function. Proc Natl Acad Sci U S A. 1961 Jan 15;47:129–136. doi: 10.1073/pnas.47.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. GRAFSTEIN B. Mechanism of spreading cortical depression. J Neurophysiol. 1956 Mar;19(2):154–171. doi: 10.1152/jn.1956.19.2.154. [DOI] [PubMed] [Google Scholar]
  12. GRUNDFEST H. Ionic mechanisms in electrogenesis. Ann N Y Acad Sci. 1961 Sep 6;94:405–457. doi: 10.1111/j.1749-6632.1961.tb35554.x. [DOI] [PubMed] [Google Scholar]
  13. GRUNDFEST H., SHANES A. M., FREYGANG W. The effect of sodium and potassium ions on the impedance change accompanying the spike in the squid giant axon. J Gen Physiol. 1953 Sep;37(1):25–37. doi: 10.1085/jgp.37.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Grinnell A. D. A study of the interaction between motoneurones in the frog spinal cord. J Physiol. 1966 Feb;182(3):612–648. doi: 10.1113/jphysiol.1966.sp007841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. HILD W., TASAKI I. Morphological and physiological properties of neurons and glial cells in tissue culture. J Neurophysiol. 1962 Mar;25:277–304. doi: 10.1152/jn.1962.25.2.277. [DOI] [PubMed] [Google Scholar]
  16. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. HODGKIN A. L., HUXLEY A. F., KATZ B. Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J Physiol. 1952 Apr;116(4):424–448. doi: 10.1113/jphysiol.1952.sp004716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hubbard J. I., Stenhouse D., Eccles R. M. Origin of synaptic noise. Science. 1967 Jul 21;157(3786):330–331. doi: 10.1126/science.157.3786.330. [DOI] [PubMed] [Google Scholar]
  19. KARLSSON U., SCHULTZ R. L. FIXATION OF THE CENTRAL NERVOUS SYSTEM FROM ELECTRON MICROSCOPY BY ALDEHYDE PERFUSION. I. PRESERVATION WITH ALDEHYDE PERFUSATES VERSUS DIRECT PERFUSION WITH OSMIUM TETROXIDE WITH SPECIAL REFERENCE TO MEMBRANES AND THE EXTRACELLULAR SPACE. J Ultrastruct Res. 1965 Feb;12:160–186. doi: 10.1016/s0022-5320(65)80014-4. [DOI] [PubMed] [Google Scholar]
  20. Karahashi Y., Goldring S. Intracellular potentials from "idle" cells in cerebral cortex of cat. Electroencephalogr Clin Neurophysiol. 1966 Jun;20(6):600–607. doi: 10.1016/0013-4694(66)90024-1. [DOI] [PubMed] [Google Scholar]
  21. Kuffler S. W., Nicholls J. G. The physiology of neuroglial cells. Ergeb Physiol. 1966;57:1–90. [PubMed] [Google Scholar]
  22. MORLOCK N. L., MORI K., WARD A. A., Jr A STUDY OF SINGLE CORTICAL NEURONS DURING SPREADING DEPRESSION. J Neurophysiol. 1964 Nov;27:1192–1198. doi: 10.1152/jn.1964.27.6.1192. [DOI] [PubMed] [Google Scholar]
  23. Morlock N. L., Bak A. F., Marshall W. H. Impedance changes in the lateral geniculate of cat. Am J Physiol. 1966 May;210(5):1192–1197. doi: 10.1152/ajplegacy.1966.210.5.1192. [DOI] [PubMed] [Google Scholar]
  24. NICHOLLS J. G., KUFFLER S. W. EXTRACELLULAR SPACE AS A PATHWAY FOR EXCHANGE BETWEEN BLOOD AND NEURONS IN THE CENTRAL NERVOUS SYSTEM OF THE LEECH: IONIC COMPOSITION OF GLIAL CELLS AND NEURONS. J Neurophysiol. 1964 Jul;27:645–671. doi: 10.1152/jn.1964.27.4.645. [DOI] [PubMed] [Google Scholar]
  25. Orkand R. K., Nicholls J. G., Kuffler S. W. Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol. 1966 Jul;29(4):788–806. doi: 10.1152/jn.1966.29.4.788. [DOI] [PubMed] [Google Scholar]
  26. Pease D. C. Polysaccharides associated with the exterior surface of epithelial cells: kidney, intestine, brain. J Ultrastruct Res. 1966 Aug;15(5):555–588. doi: 10.1016/s0022-5320(66)80128-4. [DOI] [PubMed] [Google Scholar]
  27. Ralston H. J., 3rd The fine structure of neurons in the dorsal horn of the cat spinal cord. J Comp Neurol. 1968 Feb;132(2):275–302. doi: 10.1002/cne.901320205. [DOI] [PubMed] [Google Scholar]
  28. SKOU J. C. ENZYMATIC BASIS FOR ACTIVE TRANSPORT OF NA+ AND K+ ACROSS CELL MEMBRANE. Physiol Rev. 1965 Jul;45:596–617. doi: 10.1152/physrev.1965.45.3.596. [DOI] [PubMed] [Google Scholar]
  29. STEFANIS C., JASPER H. INTRACELLULAR MICROELECTRODE STUDIES OF ANTIDROMIC RESPONSES IN CORTICAL PYRAMIDAL TRACT NEURONS. J Neurophysiol. 1964 Sep;27:828–854. doi: 10.1152/jn.1964.27.5.828. [DOI] [PubMed] [Google Scholar]
  30. TORACK R. M. THE EXTRACELLULAR SPACE OF RAT BRAIN FOLLOWING PERFUSION FIXATION WITH GLUTARALDEHYDE AND HYDROXYADIPALDEHYDE. Z Zellforsch Mikrosk Anat. 1965 May 6;66(3):352–364. doi: 10.1007/BF00334717. [DOI] [PubMed] [Google Scholar]
  31. Van Harreveld A., Khattab F. I. Changes in cortical extracellular space during spreading depression investigated with the electron microscope. J Neurophysiol. 1967 Jul;30(4):911–929. doi: 10.1152/jn.1967.30.4.911. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES