Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1970 Sep;10(9):843–858. doi: 10.1016/S0006-3495(70)86339-1

Spin-Echo Nuclear Magnetic Resonance Evidence for Complexing of Sodium Ions in Muscle, Brain, and Kidney

Freeman W Cope
PMCID: PMC1367818  PMID: 5496905

Abstract

Na+ in muscle, brain, and kidney is shown by spin-echo nuclear magnetic resonance (NMR) to consist of two fractions with different NMR parameters. The slow fraction of Na+ in these tissues has NMR relaxation times T1 and T2 of 10-15 × 10-3 sec, which is approximately 4-5 times shorter than for Na+ in aqueous NaCl solution. The slow fraction may represent Na+ dissolved in structured tissue water. The fast fraction of tissue Na+, which is shown to represent approximately 65% of the total tissue Na+ concentration, has T2 less than 1 × 10-3 sec, which resembles the values of T2 observed for Na+ complexed by synthetic ion-exchange resins. One is drawn to the conclusion that approximately 65% of total Na+ in muscle, brain, and kidney is complexed by tissue macromolecules.

Full text

PDF
843

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. COPE F. W. A THEORY OF ION TRANSPORT ACROSS CELL SURFACES BY A PROCESS ANALOGOUS TO ELECTRON TRANSPORT ACROSS LIQUID-SOLID INTERFACES. Bull Math Biophys. 1965 Mar;27:99–109. doi: 10.1007/BF02476472. [DOI] [PubMed] [Google Scholar]
  2. Cope F. W. A non-equilibrium thermodynamic theory of leakage of complexed Na+ from muscle, with NMR evidence that the non-complexed fraction of muscle Na+ is intra-vacuolar rather than extra-cellular. Bull Math Biophys. 1967 Dec;29(4):691–704. doi: 10.1007/BF02476920. [DOI] [PubMed] [Google Scholar]
  3. Cope F. W. A theory of cell hydration governed by adsorption of water on cell proteins rather than by osmotic pressure. Bull Math Biophys. 1967 Sep;29(3):583–596. doi: 10.1007/BF02476595. [DOI] [PubMed] [Google Scholar]
  4. Cope F. W. NMR evidence for complexing of Na+ in muscle, kidney, and brain, and by actomyosin. The relation of cellular complexing of Na+ to water structure and to transport kinetics. J Gen Physiol. 1967 May;50(5):1353–1375. doi: 10.1085/jgp.50.5.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cope F. W. Nuclear magnetic resonance evidence for complexing of sodium ions in muscle. Proc Natl Acad Sci U S A. 1965 Jul;54(1):225–227. doi: 10.1073/pnas.54.1.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cope F. W. Nuclear magnetic resonance evidence using D2O for structured water in muscle and brain. Biophys J. 1969 Mar;9(3):303–319. doi: 10.1016/S0006-3495(69)86388-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Czeisler J. L., Fritz O. G., Jr, Swift T. J. Direct evidence from nuclear magnetic resonance studies for bound sodium in forg skeletal muscle. Biophys J. 1970 Mar;10(3):260–268. doi: 10.1016/s0006-3495(70)86298-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hazlewood C. F., Nichols B. L., Chamberlain N. F. Evidence for the existence of a minimum of two phases of ordered water in skeletal muscle. Nature. 1969 May 24;222(5195):747–750. doi: 10.1038/222747a0. [DOI] [PubMed] [Google Scholar]
  9. LEV A. A. DETERMINATION OF ACTIVITY AND ACTIVITY COEFFICIENTS OF POTASSIUM AND SODIUM IONS IN FROG MUSCLE FIBRES. Nature. 1964 Mar 14;201:1132–1134. doi: 10.1038/2011132a0. [DOI] [PubMed] [Google Scholar]
  10. LEV A. A. OPREDELENIE AKTIVNOSTI I KO'EFFITSIENTOV AKTIVNOSTI IONOV KALIIA I NATRIIA V MYSHECHNYKH VOLOKNAKH LIAGUSHKI PRI POMOSHCHI KATIONCHUVSTVITEL'NYKH STEKLIANNYKH MIKRO'ELEKTRODOV. Biofizika. 1964;9:686–694. [PubMed] [Google Scholar]
  11. Ling G. N. A new model for the living cell: a summary of the theory and recent experimental evidence in its support. Int Rev Cytol. 1969;26:1–61. doi: 10.1016/s0074-7696(08)61633-2. [DOI] [PubMed] [Google Scholar]
  12. Ling G. N., Cope F. W. Potassium ion: is the bulk of intracellular K+ adsorbed? Science. 1969 Mar 21;163(3873):1335–1336. doi: 10.1126/science.163.3873.1335. [DOI] [PubMed] [Google Scholar]
  13. Ling G. N. The physical state of water in living cell and model systems. Ann N Y Acad Sci. 1965 Oct 13;125(2):401–417. doi: 10.1111/j.1749-6632.1965.tb45406.x. [DOI] [PubMed] [Google Scholar]
  14. McLaughlin S. G., Hinke J. A. Sodium and water binding in single striated muscle fibers of the giant barnacle. Can J Physiol Pharmacol. 1966 Sep;44(5):837–848. doi: 10.1139/y66-102. [DOI] [PubMed] [Google Scholar]
  15. Rotunno C. A., Kowalewski V., Cereijido M. Nuclear spin resonance evidence for complexing of sodium in frog skin. Biochim Biophys Acta. 1967 Feb 1;135(1):170–173. doi: 10.1016/0005-2736(67)90022-3. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES