Abstract
Na+ in muscle, brain, and kidney is shown by spin-echo nuclear magnetic resonance (NMR) to consist of two fractions with different NMR parameters. The slow fraction of Na+ in these tissues has NMR relaxation times T1 and T2 of 10-15 × 10-3 sec, which is approximately 4-5 times shorter than for Na+ in aqueous NaCl solution. The slow fraction may represent Na+ dissolved in structured tissue water. The fast fraction of tissue Na+, which is shown to represent approximately 65% of the total tissue Na+ concentration, has T2 less than 1 × 10-3 sec, which resembles the values of T2 observed for Na+ complexed by synthetic ion-exchange resins. One is drawn to the conclusion that approximately 65% of total Na+ in muscle, brain, and kidney is complexed by tissue macromolecules.
Full text
PDF















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- COPE F. W. A THEORY OF ION TRANSPORT ACROSS CELL SURFACES BY A PROCESS ANALOGOUS TO ELECTRON TRANSPORT ACROSS LIQUID-SOLID INTERFACES. Bull Math Biophys. 1965 Mar;27:99–109. doi: 10.1007/BF02476472. [DOI] [PubMed] [Google Scholar]
- Cope F. W. A non-equilibrium thermodynamic theory of leakage of complexed Na+ from muscle, with NMR evidence that the non-complexed fraction of muscle Na+ is intra-vacuolar rather than extra-cellular. Bull Math Biophys. 1967 Dec;29(4):691–704. doi: 10.1007/BF02476920. [DOI] [PubMed] [Google Scholar]
- Cope F. W. A theory of cell hydration governed by adsorption of water on cell proteins rather than by osmotic pressure. Bull Math Biophys. 1967 Sep;29(3):583–596. doi: 10.1007/BF02476595. [DOI] [PubMed] [Google Scholar]
- Cope F. W. NMR evidence for complexing of Na+ in muscle, kidney, and brain, and by actomyosin. The relation of cellular complexing of Na+ to water structure and to transport kinetics. J Gen Physiol. 1967 May;50(5):1353–1375. doi: 10.1085/jgp.50.5.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cope F. W. Nuclear magnetic resonance evidence for complexing of sodium ions in muscle. Proc Natl Acad Sci U S A. 1965 Jul;54(1):225–227. doi: 10.1073/pnas.54.1.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cope F. W. Nuclear magnetic resonance evidence using D2O for structured water in muscle and brain. Biophys J. 1969 Mar;9(3):303–319. doi: 10.1016/S0006-3495(69)86388-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Czeisler J. L., Fritz O. G., Jr, Swift T. J. Direct evidence from nuclear magnetic resonance studies for bound sodium in forg skeletal muscle. Biophys J. 1970 Mar;10(3):260–268. doi: 10.1016/s0006-3495(70)86298-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hazlewood C. F., Nichols B. L., Chamberlain N. F. Evidence for the existence of a minimum of two phases of ordered water in skeletal muscle. Nature. 1969 May 24;222(5195):747–750. doi: 10.1038/222747a0. [DOI] [PubMed] [Google Scholar]
- LEV A. A. DETERMINATION OF ACTIVITY AND ACTIVITY COEFFICIENTS OF POTASSIUM AND SODIUM IONS IN FROG MUSCLE FIBRES. Nature. 1964 Mar 14;201:1132–1134. doi: 10.1038/2011132a0. [DOI] [PubMed] [Google Scholar]
- LEV A. A. OPREDELENIE AKTIVNOSTI I KO'EFFITSIENTOV AKTIVNOSTI IONOV KALIIA I NATRIIA V MYSHECHNYKH VOLOKNAKH LIAGUSHKI PRI POMOSHCHI KATIONCHUVSTVITEL'NYKH STEKLIANNYKH MIKRO'ELEKTRODOV. Biofizika. 1964;9:686–694. [PubMed] [Google Scholar]
- Ling G. N. A new model for the living cell: a summary of the theory and recent experimental evidence in its support. Int Rev Cytol. 1969;26:1–61. doi: 10.1016/s0074-7696(08)61633-2. [DOI] [PubMed] [Google Scholar]
- Ling G. N., Cope F. W. Potassium ion: is the bulk of intracellular K+ adsorbed? Science. 1969 Mar 21;163(3873):1335–1336. doi: 10.1126/science.163.3873.1335. [DOI] [PubMed] [Google Scholar]
- Ling G. N. The physical state of water in living cell and model systems. Ann N Y Acad Sci. 1965 Oct 13;125(2):401–417. doi: 10.1111/j.1749-6632.1965.tb45406.x. [DOI] [PubMed] [Google Scholar]
- McLaughlin S. G., Hinke J. A. Sodium and water binding in single striated muscle fibers of the giant barnacle. Can J Physiol Pharmacol. 1966 Sep;44(5):837–848. doi: 10.1139/y66-102. [DOI] [PubMed] [Google Scholar]
- Rotunno C. A., Kowalewski V., Cereijido M. Nuclear spin resonance evidence for complexing of sodium in frog skin. Biochim Biophys Acta. 1967 Feb 1;135(1):170–173. doi: 10.1016/0005-2736(67)90022-3. [DOI] [PubMed] [Google Scholar]
