Abstract
The constancy of the Moffitt optical rotatory dispersion parameters for polypeptides in different solvents was tested by dispersion measurements on poly-γ-benzyl-L-glutamate in fifty-five solvents and solvent mixtures. b0 was not constant but varied linearly with the refractive index of the solvent according to the equation -b0 = 1701 - 730.3 n8. This variation could not be explained by changes in configuration of the polypeptide. a0 also showed a trend with solvent index but the values were widely scattered. λ0 did not show a statistically significant dependence on solvent index. The variation in b0 can be interpreted as an effect of solvent polarizability on the frequencies of optically active transitions.
Full text
PDF


















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BRADBURY E. M., ELLIOTT A., HANBY W. E. Optical rotatory dispersion and infrared studies of Beta-structures of Poly-O-benzyl-L-serine in solution. J Mol Biol. 1962 Nov;5:487–496. doi: 10.1016/s0022-2836(62)80121-1. [DOI] [PubMed] [Google Scholar]
- Doty P., Imahori K., Klemperer E. THE SOLUTION PROPERTIES AND CONFIGURATIONS OF A POLYAMPHOLYTIC POLYPEPTIDE: COPOLY-L-LYSINE-L-GLUTAMIC ACID. Proc Natl Acad Sci U S A. 1958 May;44(5):424–431. doi: 10.1073/pnas.44.5.424. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FASMAN G. D., LINDBLOW C., BONDENHEIMER E. CONFORMATIONAL STUDIES ON SYNTHETIC POLY-ALPHA-AMINO ACIDS: FACTORS INFLUENCING THE STABILITY OF THE HELICAL CONFORMATION OF POLY-L-GLUTAMIC ACID AND COPOLYMERS OF L-GLUTAMIC ACID AND L-LEUCINE. Biochemistry. 1964 Feb;3:155–166. doi: 10.1021/bi00890a004. [DOI] [PubMed] [Google Scholar]
- HOLZWARTH G., DOTY P. THE ULTRAVIOLET CIRCULAR DICHROISM OF POLYPEPTIDES. J Am Chem Soc. 1965 Jan 20;87:218–228. doi: 10.1021/ja01080a015. [DOI] [PubMed] [Google Scholar]
- IMAHORI K. Rotatory behavior of protein denaturation. Biochim Biophys Acta. 1960 Jan 15;37:336–341. doi: 10.1016/0006-3002(60)90242-0. [DOI] [PubMed] [Google Scholar]
- LEONARD W. J., Jr, FOSTER J. F. INFLUENCE OF HELIX CONTENT AND SOLVENT ENVIRONMENT ON THE OPTICAL ROTATORY DISPERSION PARAMETERS OF POLYPEPTIDES. J Mol Biol. 1963 Nov;7:590–598. doi: 10.1016/s0022-2836(63)80105-9. [DOI] [PubMed] [Google Scholar]
- SHECHTER E., BLOUT E. R. AN ANALYSIS OF THE OPTICAL ROTATORY DISPERSION OF POLYPEPTIDES AND PROTEINS. Proc Natl Acad Sci U S A. 1964 Apr;51:695–702. doi: 10.1073/pnas.51.4.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SOGAMI M., LEONARD W. J., Jr, FOSTER J. F. Statistical evaluation of the rotatory dispersion parameters for helical polymers and proteins: two proposed methods and their application to data on polyglutamic acid and plasma albumin. Arch Biochem Biophys. 1963 Feb;100:260–269. doi: 10.1016/0003-9861(63)90070-5. [DOI] [PubMed] [Google Scholar]
- URNES P. J., IMAHORI K., DOTY P. The optical rotatory dispersion of right-handed alpha-helices in sperm whale myoglobin. Proc Natl Acad Sci U S A. 1961 Oct 15;47:1635–1641. doi: 10.1073/pnas.47.10.1635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- URNES P., DOTY P. Optical rotation and the conformation of polypeptides and proteins. Adv Protein Chem. 1961;16:401–544. doi: 10.1016/s0065-3233(08)60033-9. [DOI] [PubMed] [Google Scholar]
- Vala M. T., Jr, Rice S. A. Solvent effects and a test of the theory of hypochromism. J Chem Phys. 1963 Nov 1;39(9):2348–2353. doi: 10.1063/1.1701440. [DOI] [PubMed] [Google Scholar]
