Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1966 Sep;6(5):583–599. doi: 10.1016/S0006-3495(66)86679-1

Digital Computer Solutions for Excitation and Propagation of the Nerve Impulse

J W Cooley, F A Dodge Jr
PMCID: PMC1368016  PMID: 5970564

Abstract

The Hodgkin-Huxley model of the nerve axon describes excitation and propagation of the nerve impulse by means of a nonlinear partial differential equation. This equation relates the conservation of the electric current along the cablelike structure of the axon to the active processes represented by a system of three rate equations for the transport of ions through the nerve membrane. These equations have been integrated numerically with respect to both distance and time for boundary conditions corresponding to a finite length of squid axon stimulated intracellularly at its midpoint. Computations were made for the threshold strength-duration curve and for the repetitive firing of propagated impulses in response to a maintained stimulus. These results are compared with previous solutions for the space-clamped axon. The effect of temperature on the threshold intensity for a short stimulus and for rheobase was determined for a series of values of temperature. Other computations show that a highly unstable subthreshold propagating wave is initiated in principle by a just threshold stimulus; that the stability of the subthreshold wave can be enhanced by reducing the excitability of the axon as with an anesthetic agent, perhaps to the point where it might be observed experimentally; but that with a somewhat greater degree of narcotization, the axon gives only decrementally propagated impulses.

Full text

PDF
583

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARMSTRONG C. M., BINSTOCK L. THE EFFECTS OF SEVERAL ALCOHOLS ON THE PROPERTIES OF THE SQUID GIANT AXON. J Gen Physiol. 1964 Nov;48:265–277. doi: 10.1085/jgp.48.2.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. DODGE F. A., FRANKENHAEUSER B. Membrane currents in isolated frog nerve fibre under voltage clamp conditions. J Physiol. 1958 Aug 29;143(1):76–90. doi: 10.1113/jphysiol.1958.sp006045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. FRANKENHAEUSER B., VALLBO A. B. ACCOMMODATION IN MYELINATED NERVE FIBRES OF XENOPUS LAEVIS AS COMPUTED ON THE BASIS OF VOLTAGE CLAMP DATA. Acta Physiol Scand. 1965 Jan-Feb;63:1–20. doi: 10.1111/j.1748-1716.1965.tb04037.x. [DOI] [PubMed] [Google Scholar]
  4. Fitzhugh R. Impulses and Physiological States in Theoretical Models of Nerve Membrane. Biophys J. 1961 Jul;1(6):445–466. doi: 10.1016/s0006-3495(61)86902-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HODGKIN A. L., HUXLEY A. F., KATZ B. Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J Physiol. 1952 Apr;116(4):424–448. doi: 10.1113/jphysiol.1952.sp004716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HUXLEY A. F. Ion movements during nerve activity. Ann N Y Acad Sci. 1959 Aug 28;81:221–246. doi: 10.1111/j.1749-6632.1959.tb49311.x. [DOI] [PubMed] [Google Scholar]
  8. MOORE J. W., ULBRICHT W., TAKATA M. EFFECT OF ETHANOL ON THE SODIUM AND POTASSIUM CONDUCTANCES OF THE SQUID AXON MEMBRANE. J Gen Physiol. 1964 Nov;48:279–295. doi: 10.1085/jgp.48.2.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Moore V. A. DISEASES OF ANIMALS COMMUNICABLE TO MAN. Am J Public Health (N Y) 1927 Feb;17(2):113–120. doi: 10.2105/ajph.17.2.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. SJODIN R. A., MULLINS L. J. Oscillatory behavior of the squid axon membrane potential. J Gen Physiol. 1958 Sep 20;42(1):39–47. doi: 10.1085/jgp.42.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. TAYLOR R. E. Effect of procaine on electrical properties of squid axon membrane. Am J Physiol. 1959 May;196(5):1071–1078. doi: 10.1152/ajplegacy.1959.196.5.1071. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES