Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1966 Nov;6(6):825–847. doi: 10.1016/s0006-3495(66)86698-5

Studies of Photosynthesis Using a Pulsed Laser

I. Temperature Dependence of Cytochrome Oxidation Rate in Chromatium. Evidence for Tunneling

Don De Vault, Britton Chance
PMCID: PMC1368046  PMID: 5972381

Abstract

The rate of oxidation of cytochrome following absorption of a short pulse of light from a ruby laser in the photosynthetic bacterium Chromatium has been measured spectrophotometrically. The half-time is about 2 μsec at room temperature increasing to 2.3 msec at about 100°K and constant at the latter value to 35°K or below. The temperature dependence above 120°K corresponds to an activation energy of 3.3 kcal/mole; that below 100°K to less than 80 cal/mol: essentially a temperature-independent electron transport reaction. Since the slowness below 100°K indicates the presence of a barrier, the lack of activation energy is taken to mean penetration by quantum-mechanical “tunneling.”

Full text

PDF
825

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTSCH R. G., KAMEN M. D. Isolation and properties of two soluble heme proteins in extracts of the photoanaerobe Chromatium. J Biol Chem. 1960 Mar;235:825–831. [PubMed] [Google Scholar]
  2. CHANCE B., OLSON J. M. Primary metabolic events associated with photosynthesis. Arch Biochem Biophys. 1960 May;88:54–58. doi: 10.1016/0003-9861(60)90195-8. [DOI] [PubMed] [Google Scholar]
  3. COHEN-BAZIRE G., SISTROM W. R., STANIER R. Y. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Physiol. 1957 Feb;49(1):25–68. doi: 10.1002/jcp.1030490104. [DOI] [PubMed] [Google Scholar]
  4. Chance B., Nishimura M. ON THE MECHANISM OF CHLOROPHYLL-CYTOCHROME INTERACTION: THE TEMPERATURE INSENSITIVITY OF LIGHT-INDUCED CYTOCHROME OXIDATION IN CHROMATIUM. Proc Natl Acad Sci U S A. 1960 Jan;46(1):19–24. doi: 10.1073/pnas.46.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cope F. W. A generalized theory of particulate electron conduction enzymes applied to cytochrome oxidase. A theory of coupled electron and/or ion transport applied to pyruvate carboxylase. Bull Math Biophys. 1965 Sep;27(3):237–252. doi: 10.1007/BF02478401. [DOI] [PubMed] [Google Scholar]
  6. Morita S., Edwards M., Gibson J. Influence of metabolic conditions on light-induced absorbancy changes in Chromatium D. Biochim Biophys Acta. 1965 Sep 27;109(1):45–58. doi: 10.1016/0926-6585(65)90089-0. [DOI] [PubMed] [Google Scholar]
  7. OLSON J. M., CHANCE B. Oxidation-reduction reactions in the photosynthetic bacterium Chromatium. I. Absorption spectrum changes in whole cells. Arch Biochem Biophys. 1960 May;88:26–39. doi: 10.1016/0003-9861(60)90193-4. [DOI] [PubMed] [Google Scholar]
  8. OLSON J. M., CHANCE B. Oxidation-reduction reactions in the photosynthetic bacterium Chromatium. II. Dependence of light reactions on intensity of irradiation and quantum efficiency of cytochrome oxidation. Arch Biochem Biophys. 1960;88:40–53. doi: 10.1016/0003-9861(60)90194-6. [DOI] [PubMed] [Google Scholar]
  9. Olson J. M. Quantum Efficiency of Cytochrome Oxidation in a Photosynthetic Bacterium. Science. 1962 Jan 12;135(3498):101–102. doi: 10.1126/science.135.3498.101. [DOI] [PubMed] [Google Scholar]
  10. Pullman B., Pullman A. ELECTRON-DONOR AND -ACCEPTOR PROPERTIES OF BIOLOGICALLY IMPORTANT PURINES, PYRIMIDINES, PTERIDINES, FLAVINS, AND AROMATIC AMINO ACIDS. Proc Natl Acad Sci U S A. 1958 Dec 15;44(12):1197–1202. doi: 10.1073/pnas.44.12.1197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Szent-Györgyi A. TOWARDS A NEW BIOCHEMISTRY? Science. 1941 Jun 27;93(2426):609–611. doi: 10.1126/science.93.2426.609. [DOI] [PubMed] [Google Scholar]
  12. Urry D. W., Eyring H. Biological electron transport. II. A variation of the imidazole pump model to include coupling. J Theor Biol. 1965 Jan;8(1):214–220. doi: 10.1016/0022-5193(65)90104-9. [DOI] [PubMed] [Google Scholar]
  13. VREDENBERG W. J., DUYSENS L. N. LIGHT-INDUCED OXIDATION OF CYTOCHROMES IN PHOTOSYNTHETIC BACTERIA BETWEEN 20 AND-170 DEGREES. Biochim Biophys Acta. 1964 May 25;79:456–463. doi: 10.1016/0926-6577(64)90211-6. [DOI] [PubMed] [Google Scholar]
  14. Winfield M. E. Electron transfer within and between haemoprotein molecules. J Mol Biol. 1965 Jul;12(3):600–611. doi: 10.1016/s0022-2836(65)80314-x. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES