Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1967 Jul;7(4):375–389. doi: 10.1016/S0006-3495(67)86595-0

Changes in Intensity and Spectral Distribution of Fluorescence

Effect of Light Treatment on Normal and DCMU*-Poisoned Anacystis nidulans

George Papageorgiou, Govindjee
PMCID: PMC1368067  PMID: 6048872

Abstract

The intensity of the “steady-state” fluorescence of “aerobic” Anacystis nidulans is variable under prolonged illumination with orange (590 mμ) or blue (440 mμ) light for both normally photosynthesizing and DCMU-poisoned cells. In general, orange light illumination causes an increase of the fluorescence intensity followed by a decrease, while blue light causes an increase until a steady level is reached. Poisoned Anacystis cells show four to eight times larger changes in fluorescence intensity than the normal cells; the detailed time course of fluorescence changes is also different in poisoned and normal cells. When algae are cooled to -196°C in light, the light-induced changes in the “steady-state” fluorescence disappear in both types of cells. Difference fluorescence spectra, constructed by subtracting the fluorescence spectra taken after 5-15 min of illumination from those after 60-90 min of illumination, show a doublet structure of the difference band with a major peak coinciding with the Anacystis emission maximum (685 mμ) and a minor peak located at about 693 mμ.

Full text

PDF
375

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRODY S. S., BRODY M. Induced changes in the efficiency of energy transfer in Porphyridum cruentum. I. Arch Biochem Biophys. 1959 May;82(1):161–178. doi: 10.1016/0003-9861(59)90101-8. [DOI] [PubMed] [Google Scholar]
  2. Broyde S. B., Brody S. S. Spectral studies of a chlorophyll pigment with fluorescence maximum at 698 mu. Biophys J. 1966 May;6(3):353–366. doi: 10.1016/s0006-3495(66)86661-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cederstrand C. N., Rabinowitch E., Govindjee Absorption and fluorescence spectra of spinach chloroplast fractions obtained by solvent extraction. Biochim Biophys Acta. 1966 Jun 8;120(2):247–258. doi: 10.1016/0926-6585(66)90344-x. [DOI] [PubMed] [Google Scholar]
  4. Cho F., Spencer J., Govindjee Emission spectra of Chlorella at very low temperatures (-269 degrees to -196 degrees). Biochim Biophys Acta. 1966 Sep 5;126(1):174–176. [PubMed] [Google Scholar]
  5. FREI Y. F. The derivative absorption spectra of chlorophyll in algae and leaves at low temperatures. Biochim Biophys Acta. 1962 Feb 12;57:82–87. doi: 10.1016/0006-3002(62)91081-8. [DOI] [PubMed] [Google Scholar]
  6. FRENCH C. S., YOUNG V. K. The fluorescence spectra of red algae and the transfer of energy from phycoerythrin to phycocyanin and chlorophyll. J Gen Physiol. 1952 Jul;35(6):873–890. doi: 10.1085/jgp.35.6.873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ghosh A. K., Govindjee Transfer of the excitation energy in Anacystis nidulans grown to obtain different pigment ratios. Biophys J. 1966 Sep;6(5):611–619. doi: 10.1016/S0006-3495(66)86681-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goedheer J. C. Fluorescence action spectra of algae and bean leaves at room and at liquid nitrogen temperatures. Biochim Biophys Acta. 1965 May 25;102(1):73–89. doi: 10.1016/0926-6585(65)90203-7. [DOI] [PubMed] [Google Scholar]
  9. Govindjee, Yang L. Structure of the red fluorescence band in chloroplasts. J Gen Physiol. 1966 Mar;49(4):763–780. doi: 10.1085/jgp.49.4.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Joliot P. Etudes simultanées des cinétiques de fluorescence et d'émission d'oxygène photosynthétique. Biochim Biophys Acta. 1965 May 25;102(1):135–148. [PubMed] [Google Scholar]
  11. KAUTSKY H., APPEL W., AMANN H. [Chlorophyll fluorescence and carbon assimilation. Part XIII. The fluorescence and the photochemistry of plants]. Biochem Z. 1960;332:277–292. [PubMed] [Google Scholar]
  12. Krey A., Govindjee FLUORESCENCE CHANGES IN PORPHYRIDIUM EXPOSED TO GREEN LIGHT OF DIFFERENT INTENSITY: A NEW EMISSION BAND AT 693 mmu AND ITS SIGNIFICANCE TO PHOTOSYNTHESIS. Proc Natl Acad Sci U S A. 1964 Dec;52(6):1568–1572. doi: 10.1073/pnas.52.6.1568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LAVOREL J. H'ETEROG'EN'EIT'E DE LA CHLOROPHYLLE IN VIVO. II. POLARISATION ET SPECTRES D'ACTION DE FLUORESCENCE. Biochim Biophys Acta. 1964 Jul 29;88:20–36. [PubMed] [Google Scholar]
  14. LAVOREL J. [Heterogeneity of chlorophyll in vivo. I. Spectra of fluorescence emission]. Biochim Biophys Acta. 1962 Jul 16;60:510–523. doi: 10.1016/0006-3002(62)90870-3. [DOI] [PubMed] [Google Scholar]
  15. OLSON R. A., BUTLER W. L., JENNINGS W. H. The orientation of chlorophyll molecules in vivo: evidence from polarized fluorescence. Biochim Biophys Acta. 1961 Dec 23;54:615–617. doi: 10.1016/0006-3002(61)90115-9. [DOI] [PubMed] [Google Scholar]
  16. VERNON L. P., AVRON M. PHOTOSYNTHESIS. Annu Rev Biochem. 1965;34:269–296. doi: 10.1146/annurev.bi.34.070165.001413. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES