Abstract
The intensity of the “steady-state” fluorescence of “aerobic” Anacystis nidulans is variable under prolonged illumination with orange (590 mμ) or blue (440 mμ) light for both normally photosynthesizing and DCMU-poisoned cells. In general, orange light illumination causes an increase of the fluorescence intensity followed by a decrease, while blue light causes an increase until a steady level is reached. Poisoned Anacystis cells show four to eight times larger changes in fluorescence intensity than the normal cells; the detailed time course of fluorescence changes is also different in poisoned and normal cells. When algae are cooled to -196°C in light, the light-induced changes in the “steady-state” fluorescence disappear in both types of cells. Difference fluorescence spectra, constructed by subtracting the fluorescence spectra taken after 5-15 min of illumination from those after 60-90 min of illumination, show a doublet structure of the difference band with a major peak coinciding with the Anacystis emission maximum (685 mμ) and a minor peak located at about 693 mμ.
Full text
PDF














Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BRODY S. S., BRODY M. Induced changes in the efficiency of energy transfer in Porphyridum cruentum. I. Arch Biochem Biophys. 1959 May;82(1):161–178. doi: 10.1016/0003-9861(59)90101-8. [DOI] [PubMed] [Google Scholar]
- Broyde S. B., Brody S. S. Spectral studies of a chlorophyll pigment with fluorescence maximum at 698 mu. Biophys J. 1966 May;6(3):353–366. doi: 10.1016/s0006-3495(66)86661-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cederstrand C. N., Rabinowitch E., Govindjee Absorption and fluorescence spectra of spinach chloroplast fractions obtained by solvent extraction. Biochim Biophys Acta. 1966 Jun 8;120(2):247–258. doi: 10.1016/0926-6585(66)90344-x. [DOI] [PubMed] [Google Scholar]
- Cho F., Spencer J., Govindjee Emission spectra of Chlorella at very low temperatures (-269 degrees to -196 degrees). Biochim Biophys Acta. 1966 Sep 5;126(1):174–176. [PubMed] [Google Scholar]
- FREI Y. F. The derivative absorption spectra of chlorophyll in algae and leaves at low temperatures. Biochim Biophys Acta. 1962 Feb 12;57:82–87. doi: 10.1016/0006-3002(62)91081-8. [DOI] [PubMed] [Google Scholar]
- FRENCH C. S., YOUNG V. K. The fluorescence spectra of red algae and the transfer of energy from phycoerythrin to phycocyanin and chlorophyll. J Gen Physiol. 1952 Jul;35(6):873–890. doi: 10.1085/jgp.35.6.873. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghosh A. K., Govindjee Transfer of the excitation energy in Anacystis nidulans grown to obtain different pigment ratios. Biophys J. 1966 Sep;6(5):611–619. doi: 10.1016/S0006-3495(66)86681-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goedheer J. C. Fluorescence action spectra of algae and bean leaves at room and at liquid nitrogen temperatures. Biochim Biophys Acta. 1965 May 25;102(1):73–89. doi: 10.1016/0926-6585(65)90203-7. [DOI] [PubMed] [Google Scholar]
- Govindjee, Yang L. Structure of the red fluorescence band in chloroplasts. J Gen Physiol. 1966 Mar;49(4):763–780. doi: 10.1085/jgp.49.4.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Joliot P. Etudes simultanées des cinétiques de fluorescence et d'émission d'oxygène photosynthétique. Biochim Biophys Acta. 1965 May 25;102(1):135–148. [PubMed] [Google Scholar]
- KAUTSKY H., APPEL W., AMANN H. [Chlorophyll fluorescence and carbon assimilation. Part XIII. The fluorescence and the photochemistry of plants]. Biochem Z. 1960;332:277–292. [PubMed] [Google Scholar]
- Krey A., Govindjee FLUORESCENCE CHANGES IN PORPHYRIDIUM EXPOSED TO GREEN LIGHT OF DIFFERENT INTENSITY: A NEW EMISSION BAND AT 693 mmu AND ITS SIGNIFICANCE TO PHOTOSYNTHESIS. Proc Natl Acad Sci U S A. 1964 Dec;52(6):1568–1572. doi: 10.1073/pnas.52.6.1568. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LAVOREL J. H'ETEROG'EN'EIT'E DE LA CHLOROPHYLLE IN VIVO. II. POLARISATION ET SPECTRES D'ACTION DE FLUORESCENCE. Biochim Biophys Acta. 1964 Jul 29;88:20–36. [PubMed] [Google Scholar]
- LAVOREL J. [Heterogeneity of chlorophyll in vivo. I. Spectra of fluorescence emission]. Biochim Biophys Acta. 1962 Jul 16;60:510–523. doi: 10.1016/0006-3002(62)90870-3. [DOI] [PubMed] [Google Scholar]
- OLSON R. A., BUTLER W. L., JENNINGS W. H. The orientation of chlorophyll molecules in vivo: evidence from polarized fluorescence. Biochim Biophys Acta. 1961 Dec 23;54:615–617. doi: 10.1016/0006-3002(61)90115-9. [DOI] [PubMed] [Google Scholar]
- VERNON L. P., AVRON M. PHOTOSYNTHESIS. Annu Rev Biochem. 1965;34:269–296. doi: 10.1146/annurev.bi.34.070165.001413. [DOI] [PubMed] [Google Scholar]