Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1967 Sep;7(5):493–503. doi: 10.1016/S0006-3495(67)86600-1

Passive Electrical Properties of Microorganisms

II. Resistance of the Bacterial Membrane

Edwin L Carstensen
PMCID: PMC1368075  PMID: 4862275

Abstract

Studies of the effective, homogeneous, dielectric constants of bacteria are used to show that the resistances of their cytoplasmic membranes are too great to explain the low-frequency conductivities which have been observed for these organisms. This reaffirms the conclusion that at low frequencies the conductivities of bacteria reflect properties of their cell walls. In the organisms studied, the conductivities of the cell wall region are as great as the conductivities of the cytoplasm. This is true even though the ion concentration in the environment is much less than that in the cells. The mobile ions of the wall are presumed to be counterions for fixed charges in this region.

Full text

PDF
493

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRITT E. M., GERHARDT P. Bacterial permeability; total uptake of lysine by intact cells, protoplasts, and cell walls of Micrococcus lysodeikticus. J Bacteriol. 1958 Sep;76(3):288–293. doi: 10.1128/jb.76.3.288-293.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. COLE K. S., MOORE J. W. Ionic current measurements in the squid giant axon membrane. J Gen Physiol. 1960 Sep;44:123–167. doi: 10.1085/jgp.44.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carstensen E. L., Cox H. A., Mercer W. B., Natale L. A. Passive Electrical Properties of Microorganisms: I. Conductivity of Escherichia coli and Micrococcus lysodeikticus. Biophys J. 1965 May;5(3):289–300. doi: 10.1016/s0006-3495(65)86717-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. FRICKE H. Relation of the permitivity of biological cell suspensions to fractional cell volume. Nature. 1953 Oct 17;172(4381):731–732. doi: 10.1038/172731a0. [DOI] [PubMed] [Google Scholar]
  5. FRICKE H., SCHWAN H. P., LI K., BRYSON V. A dielectric study of the low-conductance surface membrane in E. coli. Nature. 1956 Jan 21;177(4499):134–135. doi: 10.1038/177134a0. [DOI] [PubMed] [Google Scholar]
  6. GERHARDT P., JUDGE J. A. POROSITY OF ISOLATED CELL WALLS OF SACCHAROMYCES CEREVISIAE AND BACILLUS MEGATERIUM. J Bacteriol. 1964 Apr;87:945–951. doi: 10.1128/jb.87.4.945-951.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Pauly H., Schwan H. P. Dielectric properties and ion mobility in erythrocytes. Biophys J. 1966 Sep;6(5):621–639. doi: 10.1016/S0006-3495(66)86682-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. SCHULTZ S. G., SOLOMON A. K. Cation transport in Escherichia coli. I. Intracellular Na and K concentrations and net cation movement. J Gen Physiol. 1961 Nov;45:355–369. doi: 10.1085/jgp.45.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. SCHWAN H. P. Electrical properties of tissue and cell suspensions. Adv Biol Med Phys. 1957;5:147–209. doi: 10.1016/b978-1-4832-3111-2.50008-0. [DOI] [PubMed] [Google Scholar]
  10. SCHWAN H. P., MOROWITZ H. J. Electrical properties of the membranes of the pleuropneumonia-like organism A 5969. Biophys J. 1962 Sep;2:395–407. doi: 10.1016/s0006-3495(62)86863-5. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES