Skip to main content
British Journal of Clinical Pharmacology logoLink to British Journal of Clinical Pharmacology
. 1990;30(Suppl 1):23S–26S. doi: 10.1111/j.1365-2125.1990.tb05464.x

Receptors, inositol polyphosphates and intracellular Ca2+

S R Nahorski
PMCID: PMC1368094  PMID: 2268508

Abstract

1 A large number of cell-surface receptors catalyse the activation of phospholipase C via a guanine nucleotide exchange protein and generate at least two important intracellular second messengers. One of these, inositol(1,4,5) trisphosphate, binds to specific intracellular receptors and releases Ca2+ from intracellular stores.

2 Subsequent metabolism of this messenger is complex, proceeding either by dephosphorylation or phosphorylation routes with the latter generating inositol(1,3,4,5) tetrakisphosphate which may have additional functional significance in Ca2+ homeostasis.

3 Calculations of the relative rates of metabolism through these routes as well as the development of new analogues of inositol polyphosphates have helped our understanding of these important cell signalling systems.

Keywords: receptors, inositol phosphates, Ca2+ homeostasis

Full text

PDF
23S

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Batty I. H., Letcher A. J., Nahorski S. R. Accumulation of inositol polyphosphate isomers in agonist-stimulated cerebral-cortex slices. Comparison with metabolic profiles in cell-free preparations. Biochem J. 1989 Feb 15;258(1):23–32. doi: 10.1042/bj2580023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berridge M. J. Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem. 1987;56:159–193. doi: 10.1146/annurev.bi.56.070187.001111. [DOI] [PubMed] [Google Scholar]
  3. Carpenter D., Hanley M. R., Hawkins P. T., Jackson T. R., Stephens L. R., Vallejo M. The metabolism and functions of inositol pentakisphosphate and inositol hexakisphosphate. Biochem Soc Trans. 1989 Feb;17(1):3–5. doi: 10.1042/bst0170003. [DOI] [PubMed] [Google Scholar]
  4. Hill T. D., Dean N. M., Boynton A. L. Inositol 1,3,4,5-tetrakisphosphate induces Ca2+ sequestration in rat liver cells. Science. 1988 Nov 25;242(4882):1176–1178. doi: 10.1126/science.2847317. [DOI] [PubMed] [Google Scholar]
  5. Irvine R. F., Moor R. M. Micro-injection of inositol 1,3,4,5-tetrakisphosphate activates sea urchin eggs by a mechanism dependent on external Ca2+. Biochem J. 1986 Dec 15;240(3):917–920. doi: 10.1042/bj2400917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Morris A. P., Gallacher D. V., Irvine R. F., Petersen O. H. Synergism of inositol trisphosphate and tetrakisphosphate in activating Ca2+-dependent K+ channels. Nature. 1987 Dec 17;330(6149):653–655. doi: 10.1038/330653a0. [DOI] [PubMed] [Google Scholar]
  7. Nahorski S. R. Inositol polyphosphates and neuronal calcium homeostasis. Trends Neurosci. 1988 Oct;11(10):444–448. doi: 10.1016/0166-2236(88)90196-8. [DOI] [PubMed] [Google Scholar]
  8. Nahorski S. R., Potter B. V. Molecular recognition of inositol polyphosphates by intracellular receptors and metabolic enzymes. Trends Pharmacol Sci. 1989 Apr;10(4):139–144. doi: 10.1016/0165-6147(89)90165-x. [DOI] [PubMed] [Google Scholar]
  9. Shears S. B. Metabolism of the inositol phosphates produced upon receptor activation. Biochem J. 1989 Jun 1;260(2):313–324. doi: 10.1042/bj2600313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Whitman M., Cantley L. Phosphoinositide metabolism and the control of cell proliferation. Biochim Biophys Acta. 1989 Feb;948(3):327–344. doi: 10.1016/0304-419x(89)90005-x. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Clinical Pharmacology are provided here courtesy of British Pharmacological Society

RESOURCES