Abstract
1 Hypertrophy of the cardiac myocytes resulting from a mechanical overload may be responsible for major membraneous modifications, either at the sarcolemmal or at the sarcoplasmic level. In this study several sarcolemmal markers such as β-adrenoceptors, muscarinic receptors or (Na+,K+)-ATPase were investigated in an experimental model of cardiac hypertrophy, the chronic aortic stenosis in adult rats.
2 Left ventricular β-adrenoceptor density (expressed in fmol mg-1 protein) was decreased in the aortic stenosis group by about 30%; however, when expressed in number of receptors per cardiac cell β-adrenoceptor number in the hypertrophied myocytes was unchanged.
3 Similarly, the number of muscarinic receptors in the hypertrophied cells, expressed as number of receptors per cardiac cell, was unchanged.
4 The number of (Na+,K+)-ATPase molecules with high affinity for ouabain was markedly increased in the hypertrophied myocytes, while those with low affinity for ouabain were not.
5 These results indicate the necessity in chronic hypertrophy to calculate receptors not only in density (fmol mg-1 protein) but also in number per cardiac cell. The unchanged number of β-adrenergic and muscarinic receptors present on the hypertrophied myocytes suggests a non-regulation for the genes coding for these receptors.
Keywords: β-adrenoceptors; muscarinic receptors; (Na+,K+)-ATPase; sarcoplasmic reticulum; cardiac hypertrophy; cardiac insufficiency
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anversa P., Loud A. V., Giacomelli F., Wiener J. Absolute morphometric study of myocardial hypertrophy in experimental hypertension. II. Ultrastructure of myocytes and interstitium. Lab Invest. 1978 May;38(5):597–609. [PubMed] [Google Scholar]
- Ayobe M. H., Tarazi R. C. Reversal of changes in myocardial beta-receptors and inotropic responsiveness with regression of cardiac hypertrophy in renal hypertensive rats (RHR). Circ Res. 1984 Feb;54(2):125–134. doi: 10.1161/01.res.54.2.125. [DOI] [PubMed] [Google Scholar]
- Bristow M. R., Ginsburg R., Umans V., Fowler M., Minobe W., Rasmussen R., Zera P., Menlove R., Shah P., Jamieson S. Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. Circ Res. 1986 Sep;59(3):297–309. doi: 10.1161/01.res.59.3.297. [DOI] [PubMed] [Google Scholar]
- Buxton I. L., Brunton L. L. Direct analysis of beta-adrenergic receptor subtypes on intact adult ventricular myocytes of the rat. Circ Res. 1985 Jan;56(1):126–132. doi: 10.1161/01.res.56.1.126. [DOI] [PubMed] [Google Scholar]
- Charlemagne D., Maixent J. M., Preteseille M., Lelievre L. G. Ouabain binding sites and (Na+,K+)-ATPase activity in rat cardiac hypertrophy. Expression of the neonatal forms. J Biol Chem. 1986 Jan 5;261(1):185–189. [PubMed] [Google Scholar]
- Chevalier B., Mansier P., Callens-el Amrani F., Swynghedauw B. Beta-adrenergic system is modified in compensatory pressure cardiac overload in rats: physiological and biochemical evidence. J Cardiovasc Pharmacol. 1989 Mar;13(3):412–420. doi: 10.1097/00005344-198903000-00009. [DOI] [PubMed] [Google Scholar]
- Feldman A. M., Cates A. E., Bristow M. R., Van Dop C. Altered expression of alpha-subunits of G proteins in failing human hearts. J Mol Cell Cardiol. 1989 Apr;21(4):359–365. doi: 10.1016/0022-2828(89)90646-9. [DOI] [PubMed] [Google Scholar]
- Feldman A. M., Cates A. E., Veazey W. B., Hershberger R. E., Bristow M. R., Baughman K. L., Baumgartner W. A., Van Dop C. Increase of the 40,000-mol wt pertussis toxin substrate (G protein) in the failing human heart. J Clin Invest. 1988 Jul;82(1):189–197. doi: 10.1172/JCI113569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gende O. A., Mattiazzi A., Camilion M. C., Pedroni P., Taquini C., Gomez Llambi H., Cingolani H. E. Renal hypertension impairs inotropic isoproterenol effect without beta-receptor changes. Am J Physiol. 1985 Oct;249(4 Pt 2):H814–H819. doi: 10.1152/ajpheart.1985.249.4.H814. [DOI] [PubMed] [Google Scholar]
- Korecky B., Rakusan K. Normal and hypertrophic growth of the rat heart: changes in cell dimensions and number. Am J Physiol. 1978 Feb;234(2):H123–H128. doi: 10.1152/ajpheart.1978.234.2.H123. [DOI] [PubMed] [Google Scholar]
- Kuchii M., Fukuda K., Hano T., Ohtani H., Mohara O., Nishio I., Masuyama Y. Changes in cardiac beta-adrenoceptor concentrations in spontaneously hypertensive and experimental renal hypertensive rats. Jpn Circ J. 1981 Sep;45(9):1104–1110. doi: 10.1253/jcj.45.1104. [DOI] [PubMed] [Google Scholar]
- Lelievre L. G., Maixent J. M., Lorente P., Mouas C., Charlemagne D., Swynghedauw B. Prolonged responsiveness to ouabain in hypertrophied rat heart: physiological and biochemical evidence. Am J Physiol. 1986 Jun;250(6 Pt 2):H923–H931. doi: 10.1152/ajpheart.1986.250.6.H923. [DOI] [PubMed] [Google Scholar]
- Limas C. J. Increased number of beta-adrenergic receptors in the hypertrophied myocardium. Biochim Biophys Acta. 1979 Nov 15;588(1):174–178. doi: 10.1016/0304-4165(79)90382-9. [DOI] [PubMed] [Google Scholar]
- Limas C. J., Limas C. Decreased isoproterenol-induced "down"-regulation of beta-adrenergic receptors in the myocardium of SHR. Hypertension. 1984 Mar-Apr;6(2 Pt 2):I31–I39. doi: 10.1161/01.hyp.6.2_pt_2.i31. [DOI] [PubMed] [Google Scholar]
- Mansier P., Lelievre L. G. CA2+-free perfusion of rat heart reveals a (Na+ + K+)ATPase form highly sensitive to ouabain. Nature. 1982 Dec 9;300(5892):535–537. doi: 10.1038/300535a0. [DOI] [PubMed] [Google Scholar]
- Mayoux E., Callens F., Swynghedauw B., Charlemagne D. Adaptational process of the cardiac Ca2+ channels to pressure overload: biochemical and physiological properties of the dihydropyridine receptors in normal and hypertrophied rat hearts. J Cardiovasc Pharmacol. 1988 Oct;12(4):390–396. doi: 10.1097/00005344-198810000-00003. [DOI] [PubMed] [Google Scholar]
- Michel M. C., Wang X. L., Schlicker E., Göthert M., Beckeringh J. J., Brodde O. E. Increased beta 2-adrenoreceptor density in heart, kidney and lung of spontaneously hypertensive rats. J Auton Pharmacol. 1987 Mar;7(1):41–51. doi: 10.1111/j.1474-8673.1987.tb00132.x. [DOI] [PubMed] [Google Scholar]
- Nagai R., Zarain-Herzberg A., Brandl C. J., Fujii J., Tada M., MacLennan D. H., Alpert N. R., Periasamy M. Regulation of myocardial Ca2+-ATPase and phospholamban mRNA expression in response to pressure overload and thyroid hormone. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2966–2970. doi: 10.1073/pnas.86.8.2966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reuter H. Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature. 1983 Feb 17;301(5901):569–574. doi: 10.1038/301569a0. [DOI] [PubMed] [Google Scholar]
- Swynghedauw B., Delcayre C. Biology of cardiac overload. Pathobiol Annu. 1982;12:137–183. [PubMed] [Google Scholar]
- Upsher M. E., Khairallah P. A. Beta-adrenergic receptors in rat myocardium during the development and reversal of hypertrophy and following chronic infusions of angiotensin II and epinephrine. Arch Int Pharmacodyn Ther. 1985 Mar;274(1):65–79. [PubMed] [Google Scholar]
- Will-Shahab L., Küttner I., Warbanow W. Signal transfer in cardiac muscle. Alteration of the beta-adrenoceptor adenylate cyclase system in the hypertrophied myocardium. Biomed Biochim Acta. 1986;45(1-2):S199–S204. [PubMed] [Google Scholar]
- Woodcock E. A., Funder J. W., Johnston C. I. Decreased cardiac beta-adrenergic receptors in deoxycorticosterone-salt and renal hypertensive rats. Circ Res. 1979 Oct;45(4):560–565. doi: 10.1161/01.res.45.4.560. [DOI] [PubMed] [Google Scholar]
