Skip to main content
British Journal of Clinical Pharmacology logoLink to British Journal of Clinical Pharmacology
. 1990 Nov;30(5):673–682. doi: 10.1111/j.1365-2125.1990.tb03835.x

Beta-adrenoceptors in human alveolar macrophages isolated by elutriation.

P Hjemdahl 1, K Larsson 1, M C Johansson 1, A Zetterlund 1, A Eklund 1
PMCID: PMC1368166  PMID: 1702982

Abstract

1. beta-adrenoceptors on human alveolar macrophages obtained by bronchoalveolar lavage (BAL) from healthy smoking volunteers (n = 26) were characterized by studying cyclic AMP (cAMP) accumulation in intact macrophages evoked by adrenaline or isoprenaline, with or without appropriate antagonists and by radioligand binding to macrophage membranes, using [125I]-iodopindolol (125IPIN) as beta-adrenoceptor ligand. 2. In a second study, cAMP responses of alveolar macrophages to isoprenaline and PGE1 and of peripheral blood lymphocytes to isoprenaline were compared in smoking and non-smoking healthy volunteers (n = 9 + 9), as our initial studies were performed in smokers, due to their higher cell yield. 3. BAL yielded 47 +/- 23 x 10(6) cells in smokers and 12 +/- 6 x 10(6) cells in non-smokers with a recovery of 82 +/- 8% in the elutriation step (means +/- s.d.). The cell preparation consisted of 99.2 +/- 0.8% macrophages and their viability (trypan blue exclusion) was 97.5 +/- 5.2%. 4. Isoprenaline or adrenaline increased cAMP accumulation approximately 40-fold with or without the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX, 10(-4) M), which enhanced basal and stimulated cAMP accumulation approximately five-fold. Peak responses were seen after 2 min. EC50s for isoprenaline and adrenaline were 3-5 x 10(-7) M. Phentolamine did not alter responses to adrenaline, indicating absence of inhibitory alpha 2-adrenoceptors. Propranolol inhibited isoprenaline induced cAMP accumulation stereoselectively; pD2-values were 8.2 for (-)-propranolol, 5.6 for atenolol and 7.5 for ICI 118,551, suggesting a predominance of beta 2-adrenoceptors. 5. Specific 125IPIN binding to macrophage membranes was rapid and saturable. Non-specific binding was determined in the presence of 1 microM (-)-propranolol. KD values were 71 +/- 7 pM and the density of specific binding sites was 36 +/- 3 fmol mg-1 protein (three experiments on a membrane pool from 10 subjects; r values for Scatchard analyses = 0.98 +/- 0.01). Similar values were obtained when 200 microM isoprenaline (+ GTP) was used to assess non-specific binding. Competition experiments again showed stereoselectivity for propranolol and a predominance of beta 2-adrenoceptors, as judged by the displacement of specific 125IPIN binding by atenolol and ICI 118,551. 6. Macrophages from smokers responded with less marked cAMP accumulation upon stimulation with isoprenaline or PGE1 than did cells from non-smokers (difference approximately 30%; P less than 0.05 for both agonists) in the presence of IBMX. Thus macrophages from smokers may produce less cAMP due to post-receptor changes in responsiveness.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
673

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ariëns E. J., Simonis A. M. Physiological and pharmacological aspects of adrenergic receptor classification. Biochem Pharmacol. 1983 May 15;32(10):1539–1545. doi: 10.1016/0006-2952(83)90324-6. [DOI] [PubMed] [Google Scholar]
  2. Barnes P. J., Karliner J. S., Dollery C. T. Human lung adrenoreceptors studied by radioligand binding. Clin Sci (Lond) 1980 Jun;58(6):457–461. doi: 10.1042/cs0580457. [DOI] [PubMed] [Google Scholar]
  3. Barovsky K., Brooker G. (-)-[125I]-iodopindolol, a new highly selective radioiodinated beta-adrenergic receptor antagonist: measurement of beta-receptors on intact rat astrocytoma cells. J Cyclic Nucleotide Res. 1980;6(4):297–307. [PubMed] [Google Scholar]
  4. Blaschke E., Eklund A., Skog S., Danielsson B. Isolation of human alveolar macrophages and lymphocytes from bronchoalveolar lavage fluid by centrifugal elutriation. Scand J Clin Lab Invest. 1985 Dec;45(8):691–696. doi: 10.1080/00365518509155281. [DOI] [PubMed] [Google Scholar]
  5. Brooks S. M., McGowan K., Bernstein I. L., Altenau P., Peagler J. Relationship between numbers of beta adrenergic receptors in lymphocytes and disease severity in asthma. J Allergy Clin Immunol. 1979 Jun;63(6):401–406. doi: 10.1016/0091-6749(79)90213-6. [DOI] [PubMed] [Google Scholar]
  6. Brown B. L., Ekins R. P., Albano J. D. Saturation assay for cyclic AMP using endogenous binding protein. Adv Cyclic Nucleotide Res. 1972;2:25–40. [PubMed] [Google Scholar]
  7. Bruijnzeel P. L., van den Berg W., Hamelink M. L., van den Bogaard W., Houben L. A., Kreukniet J. Desensitization of the beta-adrenergic receptor on leucocytes after long-term oral use of a beta-sympathicomimetic; its effect on the beta-adrenergic blockade hypothesis of Szentivanyi. Ann Allergy. 1979 Aug;43(2):105–109. [PubMed] [Google Scholar]
  8. Cantrell E. T., Warr G. A., Busbee D. L., Martin R. R. Induction of aryl hydrocarbon hydroxylase in human pulmonary alveolar macrophages by cigarette smoking. J Clin Invest. 1973 Aug;52(8):1881–1884. doi: 10.1172/JCI107371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Conolly M. E., Greenacre J. K. The lymphocyte beta-adrenoceptor in normal subjects and patients with bronchial asthma: the effect of different forms of treatment on receptor function. J Clin Invest. 1976 Dec;58(6):1307–1316. doi: 10.1172/JCI108586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Denniss A. R., Colucci W. S., Allen P. D., Marsh J. D. Distribution and function of human ventricular beta adrenergic receptors in congestive heart failure. J Mol Cell Cardiol. 1989 Jul;21(7):651–660. doi: 10.1016/0022-2828(89)90606-8. [DOI] [PubMed] [Google Scholar]
  11. Eklund A., Blaschke E. Relationship between changed alveolar-capillary permeability and angiotensin converting enzyme activity in serum in sarcoidosis. Thorax. 1986 Aug;41(8):629–634. doi: 10.1136/thx.41.8.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fels A. O., Cohn Z. A. The alveolar macrophage. J Appl Physiol (1985) 1986 Feb;60(2):353–369. doi: 10.1152/jappl.1986.60.2.353. [DOI] [PubMed] [Google Scholar]
  13. Harris J. O., Swenson E. W., Johnson J. E., 3rd Human alveolar macrophages: comparison of phagocytic ability, glucose utilization, and ultrastructure in smokers and nonsmokers. J Clin Invest. 1970 Nov;49(11):2086–2096. doi: 10.1172/JCI106426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harvey J. E., Baldwin C. J., Wood P. J., Alberti K. G., Tattersfield A. E. Airway and metabolic responsiveness to intravenous salbutamol in asthma: effect of regular inhaled salbutamol. Clin Sci (Lond) 1981 May;60(5):579–585. doi: 10.1042/cs0600579. [DOI] [PubMed] [Google Scholar]
  15. Harvey J. E., Tattersfield A. E. Airway response to salbutamol: effect of regular salbutamol inhalations in normal, atopic, and asthmatic subjects. Thorax. 1982 Apr;37(4):280–287. doi: 10.1136/thx.37.4.280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hedberg A., Gerber J. G., Nies A. S., Wolfe B. B., Molinoff P. B. Effects of pindolol and propranolol on beta adrenergic receptors on human lymphocytes. J Pharmacol Exp Ther. 1986 Oct;239(1):117–123. [PubMed] [Google Scholar]
  17. Holgate S. T., Baldwin C. J., Tattersfield A. E. beta-adrenergic agonist resistance in normal human airways. Lancet. 1977 Aug 20;2(8034):375–377. doi: 10.1016/s0140-6736(77)90304-x. [DOI] [PubMed] [Google Scholar]
  18. Holgate S. T., Stubbs W. A., Wood P. J., McCaughey E. S., Alberti K. G., Tattersfield A. E. Airway and metabolic resistance to intravenous salbutamol: a study in normal man. Clin Sci (Lond) 1980 Sep;59(3):155–161. doi: 10.1042/cs0590155. [DOI] [PubMed] [Google Scholar]
  19. Howell R. E., Albelda S. M., Daise M. L., Levine E. M. Characterization of beta-adrenergic receptors in cultured human and bovine endothelial cells. J Appl Physiol (1985) 1988 Sep;65(3):1251–1257. doi: 10.1152/jappl.1988.65.3.1251. [DOI] [PubMed] [Google Scholar]
  20. Kalisker A., Nelson H. E., Middleton E., Jr Drug-induced changes of adenylate cyclase activity in cells from asthmatic and nonasthmatic subjects. J Allergy Clin Immunol. 1977 Oct;60(4):259–265. doi: 10.1016/0091-6749(77)90141-5. [DOI] [PubMed] [Google Scholar]
  21. Kather H., Pries J., Schrader V., Simon B. Inhibition of human fat cell adenylate cyclase mediated via alpha-adrenoceptors. Eur J Clin Invest. 1980 Oct;10(5):345–348. doi: 10.1111/j.1365-2362.1980.tb00043.x. [DOI] [PubMed] [Google Scholar]
  22. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  23. Lee T. P., Busse W. W., Reed C. E. Effect of beta adrenergic agonist, prostaglandins, and cortisol on lymphocyte levels of cyclic adenosine monophosphate and glycogen: abnormal lymphocytic metabolism in asthma. J Allergy Clin Immunol. 1977 Jun;59(6):408–413. doi: 10.1016/0091-6749(77)90002-1. [DOI] [PubMed] [Google Scholar]
  24. Lefkowitz R. J., Caron M. G., Stiles G. L. Mechanisms of membrane-receptor regulation. Biochemical, physiological, and clinical insights derived from studies of the adrenergic receptors. N Engl J Med. 1984 Jun 14;310(24):1570–1579. doi: 10.1056/NEJM198406143102406. [DOI] [PubMed] [Google Scholar]
  25. Liggett S. B. Identification and characterization of a homogeneous population of beta 2-adrenergic receptors on human alveolar macrophages. Am Rev Respir Dis. 1989 Feb;139(2):552–555. doi: 10.1164/ajrccm/139.2.552. [DOI] [PubMed] [Google Scholar]
  26. Martinsson A., Larsson K., Hjemdahl P. Reduced beta 2-adrenoceptor responsiveness in exercise-induced asthma. Chest. 1985 Oct;88(4):594–600. doi: 10.1378/chest.88.4.594. [DOI] [PubMed] [Google Scholar]
  27. Martinsson A., Larsson K., Hjemdahl P. Studies in vivo and in vitro of terbutaline-induced beta-adrenoceptor desensitization in healthy subjects. Clin Sci (Lond) 1987 Jan;72(1):47–54. doi: 10.1042/cs0720047. [DOI] [PubMed] [Google Scholar]
  28. Morris H. G. Drug-induced desensitization of beta adrenergic receptors. J Allergy Clin Immunol. 1980 Feb;65(2):83–86. doi: 10.1016/0091-6749(80)90190-6. [DOI] [PubMed] [Google Scholar]
  29. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  30. Nathan C. F. Secretory products of macrophages. J Clin Invest. 1987 Feb;79(2):319–326. doi: 10.1172/JCI112815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Plummer A. L. The development of drug tolerance to beta2 adrenergic agents. Chest. 1978 Jun;73(6 Suppl):949–957. doi: 10.1378/chest.73.6.949. [DOI] [PubMed] [Google Scholar]
  32. Stiles G. L., Caron M. G., Lefkowitz R. J. Beta-adrenergic receptors: biochemical mechanisms of physiological regulation. Physiol Rev. 1984 Apr;64(2):661–743. doi: 10.1152/physrev.1984.64.2.661. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Clinical Pharmacology are provided here courtesy of British Pharmacological Society

RESOURCES