Abstract
1. Three oxidations of the enantiomers of propranolol were studied in human liver microsomes under two reaction conditions. Previous in vitro studies had established that two of the livers were from poor metaboliser (PM) phenotypes for the debrisoquine 4-hydroxylase (cytochrome P-450IID6) and the remaining seven were from extensive metaboliser (EM) phenotypes. 2. In the presence of NADPH and oxygen 4- and 5-hydroxylation of propranolol occurred in microsomes from all nine livers, as did propranolol N-desisopropylation. R(+)-propranolol was oxidized preferentially along the three pathways, although enantioselectivity observed for N-desisopropylation may have arisen not only from stereoselectivity in formation rates, but also from stereoselectivity in subsequent microsomal metabolism, possibly by monoamine oxidase. The involvement of monoamine oxidase in the further microsomal metabolism of N-desisopropylpropranolol was indicated by inhibition of the metabolism of this compound when incubated with phenelzine. 3. Cumene hydroperoxide has been proposed to support only the activity of cytochrome P450IID6. This is consistent with the observations that a) propranolol 4- and 5-hydroxylation occurred in microsomes from the EM livers only and b) side-chain oxidation was not observed under these conditions in either PM or EM livers. 4. Using cumene hydroperoxide to support the reactions, the 4-hydroxylation of propranolol showed little enantioselectivity, whereas S(-)-propranolol was 5-hydroxylated about twice as fast as the R(+)-enantiomer. There were highly significant correlations between the rates of 4- and 5-hydroxylation of R(+)-propranolol (r = 0.96, P less than 0.001, n = 7 livers) and of S(-)-propranolol (r = 0.98, P less than 0.001). Both oxidations were described by single-site Michaelis-Menten kinetics. 5. The findings suggest that P450IID6 is involved in both the 4- and 5-hydroxylations of propranolol, but that these metabolites can also be formed by other P450 isoenzymes. It is confirmed that P450IID6 does not contribute to the N-desisopropylation of propranolol. Furthermore, the finding that mephenytoin did not inhibit the appearance of this metabolite is not consistent with the results of in vivo studies suggesting the involvement of the same enzyme in the side-chain oxidation of propranolol and the 4-hydroxylation of mephenytoin.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anthony L., Koshakji R., Wood A. J. Multiple pathways of propranolol's metabolism are inhibited by debrisoquin. Clin Pharmacol Ther. 1989 Sep;46(3):297–300. doi: 10.1038/clpt.1989.141. [DOI] [PubMed] [Google Scholar]
- Chen C. H., Nelson W. L. N-Dealkylation of propranolol: trapping of the 3-(1-naphthoxy)-2-hydroxypropionaldehyde formed in rat liver microsomes. Drug Metab Dispos. 1982 May-Jun;10(3):277–278. [PubMed] [Google Scholar]
- Distlerath L. M., Guengerich F. P. Characterization of a human liver cytochrome P-450 involved in the oxidation of debrisoquine and other drugs by using antibodies raised to the analogous rat enzyme. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7348–7352. doi: 10.1073/pnas.81.23.7348. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fonne-Pfister R., Meyer U. A. Xenobiotic and endobiotic inhibitors of cytochrome P-450dbl function, the target of the debrisoquine/sparteine type polymorphism. Biochem Pharmacol. 1988 Oct 15;37(20):3829–3835. doi: 10.1016/0006-2952(88)90063-9. [DOI] [PubMed] [Google Scholar]
- Goldszer F., Tindell G. L., Walle U. K., Walle T. Chemical trapping of labile aldehyde intermediates in the metabolism of propranolol and oxprenolol. Res Commun Chem Pathol Pharmacol. 1981 Nov;34(2):193–205. [PubMed] [Google Scholar]
- Gonzalez F. J., Skoda R. C., Kimura S., Umeno M., Zanger U. M., Nebert D. W., Gelboin H. V., Hardwick J. P., Meyer U. A. Characterization of the common genetic defect in humans deficient in debrisoquine metabolism. Nature. 1988 Feb 4;331(6155):442–446. doi: 10.1038/331442a0. [DOI] [PubMed] [Google Scholar]
- Gómez N., Balsa D., Unzeta M. A comparative study of some kinetic and molecular properties of microsomal and mitochondrial monoamine oxidase. Biochem Pharmacol. 1988 Sep 15;37(18):3407–3413. doi: 10.1016/0006-2952(88)90689-2. [DOI] [PubMed] [Google Scholar]
- Inaba T., Jurima M., Mahon W. A., Kalow W. In vitro inhibition studies of two isozymes of human liver cytochrome P-450. Mephenytoin p-hydroxylase and sparteine monooxygenase. Drug Metab Dispos. 1985 Jul-Aug;13(4):443–448. [PubMed] [Google Scholar]
- Jurima M., Inaba T., Kalow W. Mephenytoin metabolism in vitro by human liver. Drug Metab Dispos. 1985 Mar-Apr;13(2):151–155. [PubMed] [Google Scholar]
- Koshakji R. P., Wood A. J. Improved high-performance liquid chromatographic method for the simultaneous determination of propranolol and 4-hydroxypropranolol in plasma with fluorescence detection. J Chromatogr. 1987 Nov 27;422:294–300. doi: 10.1016/0378-4347(87)80466-8. [DOI] [PubMed] [Google Scholar]
- Kwong E. C., Shen D. D. Versatile isocratic high-performance liquid chromatographic assay for propranolol and its basic, neutral and acidic metabolites in biological fluids. J Chromatogr. 1987 Mar 6;414(2):365–379. doi: 10.1016/0378-4347(87)80061-0. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lennard M. S., Jackson P. R., Freestone S., Tucker G. T., Ramsay L. E., Woods H. F. The relationship between debrisoquine oxidation phenotype and the pharmacokinetics and pharmacodynamics of propranolol. Br J Clin Pharmacol. 1984 Jun;17(6):679–685. doi: 10.1111/j.1365-2125.1984.tb02403.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Medina M. A., Giachetti A., Shore P. A. On the physiological disposition and possible mechanism of the antihypertensive action of debrisoquin. Biochem Pharmacol. 1969 Apr;18(4):891–901. doi: 10.1016/0006-2952(69)90060-4. [DOI] [PubMed] [Google Scholar]
- Meyer U. A., Gut J., Kronbach T., Skoda C., Meier U. T., Catin T., Dayer P. The molecular mechanisms of two common polymorphisms of drug oxidation--evidence for functional changes in cytochrome P-450 isozymes catalysing bufuralol and mephenytoin oxidation. Xenobiotica. 1986 May;16(5):449–464. doi: 10.3109/00498258609050251. [DOI] [PubMed] [Google Scholar]
- Nebert D. W., Nelson D. R., Adesnik M., Coon M. J., Estabrook R. W., Gonzalez F. J., Guengerich F. P., Gunsalus I. C., Johnson E. F., Kemper B. The P450 superfamily: updated listing of all genes and recommended nomenclature for the chromosomal loci. DNA. 1989 Jan-Feb;8(1):1–13. doi: 10.1089/dna.1.1989.8.1. [DOI] [PubMed] [Google Scholar]
- Nelson W. L., Bartels M. J. N-dealkylation of propranolol in rat, dog, and man. Chemical and stereochemical aspects. Drug Metab Dispos. 1984 May-Jun;12(3):345–352. [PubMed] [Google Scholar]
- Nelson W. L., Shetty H. U. Stereoselective oxidative metabolism of propranolol in the microsomal fraction from rat and human liver. Use of deuterium labeling and pseudoracemic mixtures. Drug Metab Dispos. 1986 Jul-Aug;14(4):506–508. [PubMed] [Google Scholar]
- Olanoff L. S., Walle T., Cowart T. D., Walle U. K., Oexmann M. J., Conradi E. C. Food effects on propranolol systemic and oral clearance: support for a blood flow hypothesis. Clin Pharmacol Ther. 1986 Oct;40(4):408–414. doi: 10.1038/clpt.1986.198. [DOI] [PubMed] [Google Scholar]
- Otton S. V., Crewe H. K., Lennard M. S., Tucker G. T., Woods H. F. Use of quinidine inhibition to define the role of the sparteine/debrisoquine cytochrome P450 in metoprolol oxidation by human liver microsomes. J Pharmacol Exp Ther. 1988 Oct;247(1):242–247. [PubMed] [Google Scholar]
- Pritchard J. F., Schneck D. W., Hayes A. H., Jr Determination of propranolol and six metabolites in human urine by high-pressure liquid chromatography. J Chromatogr. 1979 Jan 1;162(1):47–58. doi: 10.1016/s0378-4347(00)82062-9. [DOI] [PubMed] [Google Scholar]
- Raghuram T. C., Koshakji R. P., Wilkinson G. R., Wood A. J. Polymorphic ability to metabolize propranolol alters 4-hydroxypropranolol levels but not beta blockade. Clin Pharmacol Ther. 1984 Jul;36(1):51–56. doi: 10.1038/clpt.1984.138. [DOI] [PubMed] [Google Scholar]
- Shaheen O., Biollaz J., Koshakji R. P., Wilkinson G. R., Wood A. J. Influence of debrisoquin phenotype on the inducibility of propranolol metabolism. Clin Pharmacol Ther. 1989 Apr;45(4):439–443. doi: 10.1038/clpt.1989.52. [DOI] [PubMed] [Google Scholar]
- Shaw L., Lennard M. S., Tucker G. T., Bax N. D., Woods H. F. Irreversible binding and metabolism of propranolol by human liver microsomes--relationship to polymorphic oxidation. Biochem Pharmacol. 1987 Jul 15;36(14):2283–2288. doi: 10.1016/0006-2952(87)90592-2. [DOI] [PubMed] [Google Scholar]
- Silber B., Holford N. H., Riegelman S. Stereoselective disposition and glucuronidation of propranolol in humans. J Pharm Sci. 1982 Jun;71(6):699–704. doi: 10.1002/jps.2600710623. [DOI] [PubMed] [Google Scholar]
- Stoschitzky K., Lindner W., Rath M., Leitner C., Uray G., Zernig G., Moshammer T., Klein W. Stereoselective hemodynamic effects of (R)-and (S)-propranolol in man. Naunyn Schmiedebergs Arch Pharmacol. 1989 Apr;339(4):474–478. doi: 10.1007/BF00736064. [DOI] [PubMed] [Google Scholar]
- Walle T., Oatis J. E., Jr, Walle U. K., Knapp D. R. New ring-hydroxylated metabolites of propranolol: species differences and stereospecific 7-hydroxylation. Drug Metab Dispos. 1982 Mar-Apr;10(2):122–127. [PubMed] [Google Scholar]
- Walle T., Walle U. K., Olanoff L. S., Conradi E. C. Partial metabolic clearances as determinants of the oral bioavailability of propranolol. Br J Clin Pharmacol. 1986 Sep;22(3):317–323. doi: 10.1111/j.1365-2125.1986.tb02893.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walle T., Walle U. K., Olanoff L. S. Quantitative account of propranolol metabolism in urine of normal man. Drug Metab Dispos. 1985 Mar-Apr;13(2):204–209. [PubMed] [Google Scholar]
- Ward S. A., Walle T., Walle U. K., Wilkinson G. R., Branch R. A. Propranolol's metabolism is determined by both mephenytoin and debrisoquin hydroxylase activities. Clin Pharmacol Ther. 1989 Jan;45(1):72–79. doi: 10.1038/clpt.1989.11. [DOI] [PubMed] [Google Scholar]
- Zanger U. M., Hauri H. P., Loeper J., Homberg J. C., Meyer U. A. Antibodies against human cytochrome P-450db1 in autoimmune hepatitis type II. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8256–8260. doi: 10.1073/pnas.85.21.8256. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zanger U. M., Vilbois F., Hardwick J. P., Meyer U. A. Absence of hepatic cytochrome P450bufI causes genetically deficient debrisoquine oxidation in man. Biochemistry. 1988 Jul 26;27(15):5447–5454. doi: 10.1021/bi00415a010. [DOI] [PubMed] [Google Scholar]
- von Bahr C., Hermansson J., Lind M. Oxidation of (R)- and (S)-propranolol in human and dog liver microsomes. Species differences in stereoselectivity. J Pharmacol Exp Ther. 1982 Aug;222(2):458–462. [PubMed] [Google Scholar]