Skip to main content
British Journal of Clinical Pharmacology logoLink to British Journal of Clinical Pharmacology
. 1991 Mar;31(3):353–355. doi: 10.1111/j.1365-2125.1991.tb05543.x

The effects of diltiazem on hepatic drug metabolizing enzymes in man using antipyrine, trimethadione and debrisoquine as model substrates.

H Sakai 1, S Kobayashi 1, K Hamada 1, S Iida 1, H Akita 1, E Tanaka 1, E Uchida 1, H Yasuhara 1
PMCID: PMC1368366  PMID: 2054276

Abstract

Six healthy male subjects were given single oral doses of antipyrine (7 mg kg-1), trimethadione (4 mg kg-1) and debrisoquine (10 mg) before and during diltiazem treatment (30 mg three times daily orally for 8 days). Antipyrine clearance decreased from 33.7 +/- 9.1 to 22.5 +/- 4.9 ml min-1 (P less than 0.05, mean +/- s.e. mean) after diltiazem treatment without any significant change in apparent volume of distribution (0.59 +/- 0.06 to 0.60 +/- 0.04 1 kg-1), resulting in an increase in antipyrine elimination half-life from 13.4 +/- 4.8 to 19.7 +/- 3.2 h (P less than 0.05). The formation clearance of antipyrine to 4-hydroxyantipyrine was decreased significantly from 10.8 +/- 2.7 to 6.6 +/- 2.7 ml min-1 (P less than 0.05), while that to 3-hydroxymethylantipyrine and norantipyrine was not altered by diltiazem. The metabolic ratio of debrisoquine (urinary excretion of debrisoquine/4-hydroxydebrisoquine) was increased significantly from 0.70 +/- 0.05 to 1.95 +/- 0.20 (P less than 0.05), while that of trimethadione (serum concentration of dimethadione/trimethadione) was not changed significantly (0.48 +/- 0.08 vs 0.41 +/- 0.06) after diltiazem treatment. Diltiazem selectively inhibits cytochrome P-450 isoenzymes.

Full text

PDF
353

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abernethy D. R., Egan J. M., Dickinson T. H., Carrum G. Substrate-selective inhibition by verapamil and diltiazem: differential disposition of antipyrine and theophylline in humans. J Pharmacol Exp Ther. 1988 Mar;244(3):994–999. [PubMed] [Google Scholar]
  2. Arvela P., Kirjarinta M., Kirjarinta M., Kärki N., Pelkonen O. Polymorphism of debrisoquine hydroxylation among Finns and Lapps. Br J Clin Pharmacol. 1988 Nov;26(5):601–603. doi: 10.1111/j.1365-2125.1988.tb05301.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bauer L. A., Stenwall M., Horn J. R., Davis R., Opheim K., Greene L. Changes in antipyrine and indocyanine green kinetics during nifedipine, verapamil, and diltiazem therapy. Clin Pharmacol Ther. 1986 Aug;40(2):239–242. doi: 10.1038/clpt.1986.169. [DOI] [PubMed] [Google Scholar]
  4. Breimer D. D. Interindividual variations in drug disposition. Clinical implications and methods of investigation. Clin Pharmacokinet. 1983 Sep-Oct;8(5):371–377. doi: 10.2165/00003088-198308050-00001. [DOI] [PubMed] [Google Scholar]
  5. Brodie M. J., MacPhee G. J. Carbamazepine neurotoxicity precipitated by diltiazem. Br Med J (Clin Res Ed) 1986 May 3;292(6529):1170–1171. doi: 10.1136/bmj.292.6529.1170-a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carrum G., Egan J. M., Abernethy D. R. Diltiazem treatment impairs hepatic drug oxidation: studies of antipyrine. Clin Pharmacol Ther. 1986 Aug;40(2):140–143. doi: 10.1038/clpt.1986.152. [DOI] [PubMed] [Google Scholar]
  7. Danhof M., Groot-van der Vis E., Breiner D. D. Assay of antipyrine and its primary metabolites in plasma, saliva and urine by high-performance liquid chromatography and some preliminary results in man. Pharmacology. 1979;18(4):210–223. doi: 10.1159/000137254. [DOI] [PubMed] [Google Scholar]
  8. Eimer M., Carter B. L. Elevated serum carbamazepine concentrations following diltiazem initiation. Drug Intell Clin Pharm. 1987 Apr;21(4):340–342. doi: 10.1177/106002808702100408. [DOI] [PubMed] [Google Scholar]
  9. Elkayam U., Parikh K., Torkan B., Weber L., Cohen J. L., Rahimtoola S. H. Effect of diltiazem on renal clearance and serum concentration of digoxin in patients with cardiac disease. Am J Cardiol. 1985 May 1;55(11):1393–1395. doi: 10.1016/0002-9149(85)90511-9. [DOI] [PubMed] [Google Scholar]
  10. Guengerich F. P., Beaune P. H., Umbenhauer D. R., Churchill P. F., Bork R. W., Dannan G. A., Knodell R. G., Lloyd R. S., Martin M. V. Cytochrome P-450 enzymes involved in genetic polymorphism of drug oxidation in humans. Biochem Soc Trans. 1987 Aug;15(4):576–578. doi: 10.1042/bst0150576. [DOI] [PubMed] [Google Scholar]
  11. Harrison P. M., Tonkin A. M., Dixon S. T., McLean A. J. Determination of debrisoquine and its 4-hydroxy metabolite in urine by high-performance liquid chromatography. J Chromatogr. 1986 Jan 10;374(1):204–208. doi: 10.1016/s0378-4347(00)83273-9. [DOI] [PubMed] [Google Scholar]
  12. Kobayashi S., Tanaka E., Oguchi K., Yoshida T., Kuroiwa Y., Yasuhara H. A method for estimation of hepatic drug-metabolizing capacity: determination of concentration of trimethadione and its metabolite in human serum. J Pharmacobiodyn. 1984 May;7(5):329–335. doi: 10.1248/bpb1978.7.329. [DOI] [PubMed] [Google Scholar]
  13. Nafziger A. N., May J. J., Bertino J. S., Jr Inhibition of theophylline elimination by diltiazem therapy. J Clin Pharmacol. 1987 Nov;27(11):862–865. doi: 10.1002/j.1552-4604.1987.tb05580.x. [DOI] [PubMed] [Google Scholar]
  14. Oyama Y., Fujii S., Kanda K., Akino E., Kawasaki H., Nagata M., Goto K. Digoxin-diltiazem interaction. Am J Cardiol. 1984 May 15;53(10):1480–1481. doi: 10.1016/s0002-9149(84)91653-9. [DOI] [PubMed] [Google Scholar]
  15. Posner J., Danhof M., Teunissen M. W., Breimer D. D., Whiteman P. D. The disposition of antipyrine and its metabolites in young and elderly healthy volunteers. Br J Clin Pharmacol. 1987 Jul;24(1):51–55. doi: 10.1111/j.1365-2125.1987.tb03135.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rameis H., Magometschnigg D., Ganzinger U. The diltiazem-digoxin interaction. Clin Pharmacol Ther. 1984 Aug;36(2):183–189. doi: 10.1038/clpt.1984.160. [DOI] [PubMed] [Google Scholar]
  17. Tanaka E., Kinoshita H., Yamamoto T., Kuroiwa Y., Takabatake E. Pharmacokinetic studies of trimethadione and its metabolite in rats with chemical-induced liver injury. J Pharmacobiodyn. 1981 Aug;4(8):576–583. doi: 10.1248/bpb1978.4.576. [DOI] [PubMed] [Google Scholar]
  18. Tanaka E., Kinoshita H., Yoshida T., Kuroiwa Y. Studies on the trimethadione metabolism as a tool for the assessment of drug-metabolizing capacity using plasma and urine of rats pretreated with phenobarbital and 3-methylcholanthrene. J Pharmacobiodyn. 1982 Mar;5(3):162–171. doi: 10.1248/bpb1978.5.162. [DOI] [PubMed] [Google Scholar]
  19. Tanaka E., Misawa S. Simultaneous determination of serum trimethadione and its metabolite by gas chromatography. J Chromatogr. 1987 Jan 23;413:376–378. doi: 10.1016/0378-4347(87)80257-8. [DOI] [PubMed] [Google Scholar]
  20. Tateishi T., Nakashima H., Shitou T., Kumagai Y., Ohashi K., Hosoda S., Ebihara A. Effect of diltiazem on the pharmacokinetics of propranolol, metoprolol and atenolol. Eur J Clin Pharmacol. 1989;36(1):67–70. doi: 10.1007/BF00561026. [DOI] [PubMed] [Google Scholar]
  21. Teunissen M. W., Meerburg-van der Torren J. E., Vermeulen N. P., Breimer D. D. Automated high-performance liquid chromatographic determination of antipyrine and its main metabolites in plasma, saliva and urine, including 4,4'-dihydroxyantipyrine. J Chromatogr. 1983 Dec 9;278(2):367–378. [PubMed] [Google Scholar]
  22. Toyosaki N., Toyo-oka T., Natsume T., Katsuki T., Tateishi T., Yaginuma T., Hosoda S. Combination therapy with diltiazem and nifedipine in patients with effort angina pectoris. Circulation. 1988 Jun;77(6):1370–1375. doi: 10.1161/01.cir.77.6.1370. [DOI] [PubMed] [Google Scholar]
  23. Yoshida A., Fujita M., Kurosawa N., Nioka M., Shichinohe T., Arakawa M., Fukuda R., Owada E., Ito K. Effects of diltiazem on plasma level and urinary excretion of digoxin in healthy subjects. Clin Pharmacol Ther. 1984 May;35(5):681–685. doi: 10.1038/clpt.1984.95. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Clinical Pharmacology are provided here courtesy of British Pharmacological Society

RESOURCES