Skip to main content
British Journal of Clinical Pharmacology logoLink to British Journal of Clinical Pharmacology
. 1991 Feb;31(2):125–130. doi: 10.1111/j.1365-2125.1991.tb05499.x

Relationship between phenytoin and tolbutamide hydroxylations in human liver microsomes.

C J Doecke 1, M E Veronese 1, S M Pond 1, J O Miners 1, D J Birkett 1, L N Sansom 1, M E McManus 1
PMCID: PMC1368377  PMID: 2049228

Abstract

1. The metabolic interaction of phenytoin and tolbutamide in human liver microsomes was investigated. 2. Phenytoin 4-hydroxylation (mean Km 29.6 microM, n = 3) was competitively inhibited by tolbutamide (mean Ki 106.2 microM, n = 3) and tolbutamide methylhydroxylation (mean Km 85.6 microM, n = 3) was competitively inhibited by phenytoin (mean Ki 22.6 microM, n = 3). 3. A significant correlation was obtained between phenytoin and tolbutamide hydroxylations in microsomes from 18 human livers (rs = 0.82, P less than 0.001). 4. Sulphaphenazole was a potent inhibitor of both phenytoin and tolbutamide hydroxylations with IC50 values of 0.4 microM and 0.6 microM, respectively. 5. Mephenytoin was a poor inhibitor of both phenytoin and tolbutamide hydroxylations with IC50 values greater than 400 microM for both reactions. 6. Anti-rabbit P450IIC3 IgG inhibited both phenytoin and tolbutamide hydroxylations in human liver microsomes by 62 and 68%, respectively. 7. These in vitro studies are consistent with phenytoin 4-hydroxylation and tolbutamide methylhydroxylation being catalysed by the same cytochrome P450 isozyme(s) in human liver microsomes.

Full text

PDF
125

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Back D. B., Park B. K., Tjia J. F., Newby S. N. Sulphaphenazole and drug oxidation in man. Br J Clin Pharmacol. 1983 Oct;16(4):460–461. doi: 10.1111/j.1365-2125.1983.tb02199.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beech E., Mathur S. V., Harrold B. P. Phenytoin toxicity produced by tolbutamide. BMJ. 1988 Dec 17;297(6663):1613–1614. doi: 10.1136/bmj.297.6663.1613-c. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brian W. R., Srivastava P. K., Umbenhauer D. R., Lloyd R. S., Guengerich F. P. Expression of a human liver cytochrome P-450 protein with tolbutamide hydroxylase activity in Saccharomyces cerevisiae. Biochemistry. 1989 Jun 13;28(12):4993–4999. doi: 10.1021/bi00438a014. [DOI] [PubMed] [Google Scholar]
  4. Dickinson R. G., Hooper W. D., Patterson M., Eadie M. J., Maguire B. Extent of urinary excretion of p-hydroxyphenytoin in healthy subjects given phenytoin. Ther Drug Monit. 1985;7(3):283–289. doi: 10.1097/00007691-198507030-00008. [DOI] [PubMed] [Google Scholar]
  5. Doecke C. J., Sansom L. N., McManus M. E. Phenytoin 4-hydroxylation by rabbit liver P450IIC3 and identification of orthologs in human liver microsomes. Biochem Biophys Res Commun. 1990 Jan 30;166(2):860–866. doi: 10.1016/0006-291x(90)90889-u. [DOI] [PubMed] [Google Scholar]
  6. Fritz S., Lindner W., Roots I., Frey B. M., Küpfer A. Stereochemistry of aromatic phenytoin hydroxylation in various drug hydroxylation phenotypes in humans. J Pharmacol Exp Ther. 1987 May;241(2):615–622. [PubMed] [Google Scholar]
  7. Hall S. D., Guengerich F. P., Branch R. A., Wilkinson G. R. Characterization and inhibition of mephenytoin 4-hydroxylase activity in human liver microsomes. J Pharmacol Exp Ther. 1987 Jan;240(1):216–222. [PubMed] [Google Scholar]
  8. Hansen J. M., Kampmann J. P., Siersbaek-Nielsen K., Lumholtz I. B., Arrøe M., Abildgaard U., Skovsted L. The effect of different sulfonamides on phenytoin metabolism in man. Acta Med Scand Suppl. 1979;624:106–110. doi: 10.1111/j.0954-6820.1979.tb00729.x. [DOI] [PubMed] [Google Scholar]
  9. Inaba T., Jurima M., Mahon W. A., Kalow W. In vitro inhibition studies of two isozymes of human liver cytochrome P-450. Mephenytoin p-hydroxylase and sparteine monooxygenase. Drug Metab Dispos. 1985 Jul-Aug;13(4):443–448. [PubMed] [Google Scholar]
  10. KUTT H., WOLK M., SCHERMAN R., MCDOWELL F. INSUFFICIENT PARAPHYDROXYLATION AS A CAUSE OF DIPHENYLHYDANTOIN TOXICITY. Neurology. 1964 Jun;14:542–548. doi: 10.1212/wnl.14.6.542. [DOI] [PubMed] [Google Scholar]
  11. Kalow W. The genetic defect of mephenytoin hydroxylation. Xenobiotica. 1986 May;16(5):379–389. doi: 10.3109/00498258609050246. [DOI] [PubMed] [Google Scholar]
  12. Knodell R. G., Hall S. D., Wilkinson G. R., Guengerich F. P. Hepatic metabolism of tolbutamide: characterization of the form of cytochrome P-450 involved in methyl hydroxylation and relationship to in vivo disposition. J Pharmacol Exp Ther. 1987 Jun;241(3):1112–1119. [PubMed] [Google Scholar]
  13. McManus M. E., Burgess W. M., Veronese M. E., Huggett A., Quattrochi L. C., Tukey R. H. Metabolism of 2-acetylaminofluorene and benzo(a)pyrene and activation of food-derived heterocyclic amine mutagens by human cytochromes P-450. Cancer Res. 1990 Jun 1;50(11):3367–3376. [PubMed] [Google Scholar]
  14. McManus M. E., Felton J. S., Knize M. G., Burgess W. M., Roberts-Thomson S., Pond S. M., Stupans I., Veronese M. E. Activation of the food-derived mutagen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine by rabbit and human liver microsomes and purified forms of cytochrome P-450. Carcinogenesis. 1989 Feb;10(2):357–363. doi: 10.1093/carcin/10.2.357. [DOI] [PubMed] [Google Scholar]
  15. Miners J. O., Smith K. J., Robson R. A., McManus M. E., Veronese M. E., Birkett D. J. Tolbutamide hydroxylation by human liver microsomes. Kinetic characterisation and relationship to other cytochrome P-450 dependent xenobiotic oxidations. Biochem Pharmacol. 1988 Mar 15;37(6):1137–1144. doi: 10.1016/0006-2952(88)90522-9. [DOI] [PubMed] [Google Scholar]
  16. Miners J. O., Wing L. M., Birkett D. J. Normal metabolism of debrisoquine and theophylline in a slow tolbutamide metaboliser. Aust N Z J Med. 1985 Jun;15(3):348–349. doi: 10.1111/j.1445-5994.1985.tb04052.x. [DOI] [PubMed] [Google Scholar]
  17. NELSON E., O'REILLY I. Kinetics of carboxytolbutamide excretion following tolbutamide and carboxytolbutamide administration. J Pharmacol Exp Ther. 1961 Apr;132:103–109. [PubMed] [Google Scholar]
  18. Nebert D. W., Nelson D. R., Adesnik M., Coon M. J., Estabrook R. W., Gonzalez F. J., Guengerich F. P., Gunsalus I. C., Johnson E. F., Kemper B. The P450 superfamily: updated listing of all genes and recommended nomenclature for the chromosomal loci. DNA. 1989 Jan-Feb;8(1):1–13. doi: 10.1089/dna.1.1989.8.1. [DOI] [PubMed] [Google Scholar]
  19. Pond S. M., Birkett D. J., Wade D. N. Mechanisms of inhibition of tolbutamide metabolism: phenylbutazone, oxyphenbutazone, sulfaphenazole. Clin Pharmacol Ther. 1977 Nov;22(5 Pt 1):573–579. doi: 10.1002/cpt1977225part1573. [DOI] [PubMed] [Google Scholar]
  20. Relling M. V., Aoyama T., Gonzalez F. J., Meyer U. A. Tolbutamide and mephenytoin hydroxylation by human cytochrome P450s in the CYP2C subfamily. J Pharmacol Exp Ther. 1990 Jan;252(1):442–447. [PubMed] [Google Scholar]
  21. Robson R. A., Miners J. O., Matthews A. P., Stupans I., Meller D., McManus M. E., Birkett D. J. Characterisation of theophylline metabolism by human liver microsomes. Inhibition and immunochemical studies. Biochem Pharmacol. 1988 May 1;37(9):1651–1659. doi: 10.1016/0006-2952(88)90423-6. [DOI] [PubMed] [Google Scholar]
  22. Scott J., Poffenbarger P. L. Pharmacogenetics of tolbutamide metabolism in humans. Diabetes. 1979 Jan;28(1):41–51. [PubMed] [Google Scholar]
  23. Shimada T., Iwasaki M., Martin M. V., Guengerich F. P. Human liver microsomal cytochrome P-450 enzymes involved in the bioactivation of procarcinogens detected by umu gene response in Salmonella typhimurium TA 1535/pSK1002. Cancer Res. 1989 Jun 15;49(12):3218–3228. [PubMed] [Google Scholar]
  24. Shimada T., Misono K. S., Guengerich F. P. Human liver microsomal cytochrome P-450 mephenytoin 4-hydroxylase, a prototype of genetic polymorphism in oxidative drug metabolism. Purification and characterization of two similar forms involved in the reaction. J Biol Chem. 1986 Jan 15;261(2):909–921. [PubMed] [Google Scholar]
  25. Thomas R. C., Ikeda G. J. The metabolic fate of tolbutamide in man and in the rat. J Med Chem. 1966 Jul;9(4):507–510. doi: 10.1021/jm00322a014. [DOI] [PubMed] [Google Scholar]
  26. Vasko M. R., Bell R. D., Daly D. D., Pippenger C. E. Inheritance of phenytoin hypometabolism: a kinetic study of one family. Clin Pharmacol Ther. 1980 Jan;27(1):96–103. doi: 10.1038/clpt.1980.15. [DOI] [PubMed] [Google Scholar]
  27. Vermeij P., Ferrari M. D., Buruma O. J., Veenema H., de Wolff F. A. Inheritance of poor phenytoin parahydroxylation capacity in a Dutch family. Clin Pharmacol Ther. 1988 Nov;44(5):588–593. doi: 10.1038/clpt.1988.198. [DOI] [PubMed] [Google Scholar]
  28. Veronese M. E., Miners J. O., Randles D., Gregov D., Birkett D. J. Validation of the tolbutamide metabolic ratio for population screening with use of sulfaphenazole to produce model phenotypic poor metabolizers. Clin Pharmacol Ther. 1990 Mar;47(3):403–411. doi: 10.1038/clpt.1990.46. [DOI] [PubMed] [Google Scholar]
  29. Wesseling H., Mols-Thürkow I. Interaction of diphenylhydantoin (DPH) and tolbutamide in man. Eur J Clin Pharmacol. 1975;8(1):75–78. doi: 10.1007/BF00616418. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Clinical Pharmacology are provided here courtesy of British Pharmacological Society

RESOURCES