Skip to main content
British Journal of Clinical Pharmacology logoLink to British Journal of Clinical Pharmacology
. 1991 Jan;31(1):47–54. doi: 10.1111/j.1365-2125.1991.tb03856.x

Differing calcium sensitivities of human cerebral and digital arteries, human metatarsal veins, and rat aorta.

V Iwanov 1, R F Moulds 1
PMCID: PMC1368411  PMID: 2015170

Abstract

1. The effects of the voltage dependent calcium channel blocking agent nifedipine, and of a calcium free bathing medium, on the responses of human blood vessels obtained postmortem to various agonists have been compared with those of the rat aorta. The human vessels studied were digital arteries, basilar arteries and metatarsal veins. 2. Responses to potassium chloride (5-80 mM), noradrenaline (10(-9)-10(-4) M), 5-hydroxytryptamine (10(-8)-10(-4) M) and U46619 (10(-11)-10(-6) M), in the presence and absence of nifedipine (1, 10, and 100 nM) or in a calcium-free bathing medium, were assessed using an area-under-curve analysis. 3. In general, the order of sensitivity of the vessels to inhibition of agonist induced contractures by nifedipine was basilar arteries greater than metatarsal veins = digital arteries = rat aorta. 4. For all the vessels, the order of sensitivity for antagonism of responses to the agonists by nifedipine was potassium chloride greater than 5-hydroxytryptamine = noradrenaline greater than U46619. 5. A calcium free bath inhibited responses of digital arteries to potassium chloride more than noradrenaline, 5-hydroxytryptamine or U46619, and responses of rat aorta to a greater extent than responses of the digital arteries. 6. In the rat aorta, a calcium-free bath inhibited responses to all agonists (except KCl) to a greater degree than did nifedipine. 7. We conclude that inhibition of extracellular calcium entry through voltage dependent calcium channels affects contractile responses of different blood vessels to different extents, and, within the same blood vessel, responses to different contractile agonists to different extents.

Full text

PDF
47

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angus J. A., Brazenor R. M. Relaxation of large coronary artery by verapamil, D600, and nifedipine is constrictor selective: comparison with glyceryl trinitrate. J Cardiovasc Pharmacol. 1983 Mar-Apr;5(2):321–328. doi: 10.1097/00005344-198303000-00026. [DOI] [PubMed] [Google Scholar]
  2. Bevan J. A. Selective action of diltiazem on cerebral vascular smooth muscle in the rabbit: antagonism of extrinsic but not intrinsic maintained tone. Am J Cardiol. 1982 Feb 18;49(3):519–524. doi: 10.1016/s0002-9149(82)80005-2. [DOI] [PubMed] [Google Scholar]
  3. Bolton T. B. Mechanisms of action of transmitters and other substances on smooth muscle. Physiol Rev. 1979 Jul;59(3):606–718. doi: 10.1152/physrev.1979.59.3.606. [DOI] [PubMed] [Google Scholar]
  4. Bury R. W. Area estimation in pharmacokinetic studies using a hand-held programmable calculator. Int J Biomed Comput. 1984 May-Jun;15(3):219–224. doi: 10.1016/0020-7101(84)90055-2. [DOI] [PubMed] [Google Scholar]
  5. Exton J. H. Role of calcium and phosphoinositides in the actions of certain hormones and neurotransmitters. J Clin Invest. 1985 Jun;75(6):1753–1757. doi: 10.1172/JCI111886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gerrard J. M., Butler A. M., Graff G., Stoddard S. F., White J. G. Prostaglandin endoperoxides promote calcium release from a platelet membrane fraction in vitro. Prostaglandins Med. 1978 Nov;1(5):373–385. doi: 10.1016/0161-4630(78)90124-6. [DOI] [PubMed] [Google Scholar]
  7. Godfraind T., Morel N., Wibo M. Tissue specificity of dihydropyridine-type calcium antagonists in human isolated tissues. Trends Pharmacol Sci. 1988 Jan;9(1):37–39. doi: 10.1016/0165-6147(88)90241-6. [DOI] [PubMed] [Google Scholar]
  8. Hurwitz L., Suria A. The link between agonist action and response in smooth muscle. Annu Rev Pharmacol. 1971;11:303–326. doi: 10.1146/annurev.pa.11.040171.001511. [DOI] [PubMed] [Google Scholar]
  9. Jauernig R. A., Moulds R. F. A human arterial preparation for studying the effects of vasoactive agents. Circ Res. 1978 Mar;42(3):363–368. doi: 10.1161/01.res.42.3.363. [DOI] [PubMed] [Google Scholar]
  10. Lipe S., Moulds R. F. In vitro differences between human arteries and veins in their responses to hydralazine. J Pharmacol Exp Ther. 1981 Apr;217(1):204–208. [PubMed] [Google Scholar]
  11. Michell R. H. Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta. 1975 Mar 25;415(1):81–47. doi: 10.1016/0304-4157(75)90017-9. [DOI] [PubMed] [Google Scholar]
  12. Petruk K. C., West M., Mohr G., Weir B. K., Benoit B. G., Gentili F., Disney L. B., Khan M. I., Grace M., Holness R. O. Nimodipine treatment in poor-grade aneurysm patients. Results of a multicenter double-blind placebo-controlled trial. J Neurosurg. 1988 Apr;68(4):505–517. doi: 10.3171/jns.1988.68.4.0505. [DOI] [PubMed] [Google Scholar]
  13. Shimizu K., Ohta T., Toda N. Evidence for greater susceptibility of isolated dog cerebral arteries to Ca antagonists than peripheral arteries. Stroke. 1980 May-Jun;11(3):261–266. doi: 10.1161/01.str.11.3.261. [DOI] [PubMed] [Google Scholar]
  14. Spedding M., Cavero I. "Calcium antagonists": a class of drugs with a bright future. Part II. Determination of basic pharmacological properties. Life Sci. 1984 Aug 6;35(6):575–587. doi: 10.1016/0024-3205(84)90252-2. [DOI] [PubMed] [Google Scholar]
  15. Suba E. A., Roth B. L. Prostaglandins activate phosphoinositide metabolism in rat aorta. Eur J Pharmacol. 1987 Apr 29;136(3):325–332. doi: 10.1016/0014-2999(87)90305-0. [DOI] [PubMed] [Google Scholar]
  16. Van Breemen C. Calcium requirement for activation of intact aortic smooth muscle. J Physiol. 1977 Nov;272(2):317–329. doi: 10.1113/jphysiol.1977.sp012046. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Clinical Pharmacology are provided here courtesy of British Pharmacological Society

RESOURCES