Skip to main content
British Journal of Clinical Pharmacology logoLink to British Journal of Clinical Pharmacology
. 1991 Sep;32(3):283–288. doi: 10.1111/j.1365-2125.1991.tb03900.x

Phenotypic debrisoquine 4-hydroxylase activity among extensive metabolizers is unrelated to genotype as determined by the Xba-I restriction fragment length polymorphism.

J Turgeon 1, W E Evans 1, M V Relling 1, G R Wilkinson 1, D M Roden 1
PMCID: PMC1368519  PMID: 1685663

Abstract

1. The major pathway for 4-hydroxylation of debrisoquine in man is polymorphic and under genetic control. More than 90% of subjects (extensive metabolizers, EMs) have active debrisoquine 4-hydroxylase (cytochrome P450IID6) while in the remainder (poor metabolizers, PMs), cytochrome P450IID6 activity is greatly impaired. 2. Within the EM group, cytochrome P450IID6-mediated metabolism of a range of substrates varies widely. Some of this intra-phenotype non-uniformity may be explained by the presence of two subsets of subjects with different genotypes (heterozygotes and homozygotes). 3. Cytochrome P450IID6 substrates have not differentiated between these two genotypes. However, a restriction fragment length polymorphism (RFLP) which identifies mutant alleles of cytochrome P450IID6 locus has been described and can definitively assign genotype in some heterozygous EM subjects. 4. In this study, we used RFLP analysis and encainide as a model substrate to determine if non-uniformity in cytochrome P450IID6 activity among EMs is related to genotype. We tested the hypothesis that heterozygotes exhibit intermediate metabolic activity and that homozygous dominants exhibit the highest activity. We proposed encainide as a useful substrate for this purpose since cytochrome P450IID6 catalyzes not only its biotransformation to O-desmethyl encainide (ODE) but also the subsequent metabolism of ODE to 3-methoxy-O-desmethyl encainide (MODE). 5. A single 50 mg oral dose of encainide was administered to 139 normal volunteers and 14 PMs were identified. Urinary ratios among encainide, ODE and MODE in the remaining 125 EM subjects revealed a wide range of cytochrome P450IID6 activity. However, Southern blotting of genomic DNA digested with XbaI identified obligate heterozygotes in both extremes of all ratio distributions.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
283

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ayesh R., Idle J. R., Ritchie J. C., Crothers M. J., Hetzel M. R. Metabolic oxidation phenotypes as markers for susceptibility to lung cancer. Nature. 1984 Nov 8;312(5990):169–170. doi: 10.1038/312169a0. [DOI] [PubMed] [Google Scholar]
  2. Baer A. N., McAllister C. B., Wilkinson G. R., Woosley R. L., Pincus T. Altered distribution of debrisoquine oxidation phenotypes in patients with systemic lupus erythematosus. Arthritis Rheum. 1986 Jul;29(7):843–850. doi: 10.1002/art.1780290705. [DOI] [PubMed] [Google Scholar]
  3. Barbeau A., Cloutier T., Roy M., Plasse L., Paris S., Poirier J. Ecogenetics of Parkinson's disease: 4-hydroxylation of debrisoquine. Lancet. 1985 Nov 30;2(8466):1213–1216. doi: 10.1016/s0140-6736(85)90743-3. [DOI] [PubMed] [Google Scholar]
  4. Barbey J. T., Thompson K. A., Echt D. S., Woosley R. L., Roden D. M. Antiarrhythmic activity, electrocardiographic effects and pharmacokinetics of the encainide metabolites O-desmethyl encainide and 3-methoxy-O-desmethyl encainide in man. Circulation. 1988 Feb;77(2):380–391. doi: 10.1161/01.cir.77.2.380. [DOI] [PubMed] [Google Scholar]
  5. Caporaso N., Hayes R. B., Dosemeci M., Hoover R., Ayesh R., Hetzel M., Idle J. Lung cancer risk, occupational exposure, and the debrisoquine metabolic phenotype. Cancer Res. 1989 Jul 1;49(13):3675–3679. [PubMed] [Google Scholar]
  6. Caporaso N., Pickle L. W., Bale S., Ayesh R., Hetzel M., Idle J. The distribution of debrisoquine metabolic phenotypes and implications for the suggested association with lung cancer risk. Genet Epidemiol. 1989;6(4):517–524. doi: 10.1002/gepi.1370060406. [DOI] [PubMed] [Google Scholar]
  7. Evans D. A., Harmer D., Downham D. Y., Whibley E. J., Idle J. R., Ritchie J., Smith R. L. The genetic control of sparteine and debrisoquine metabolism in man with new methods of analysing bimodal distributions. J Med Genet. 1983 Oct;20(5):321–329. doi: 10.1136/jmg.20.5.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Evans D. A., Mahgoub A., Sloan T. P., Idle J. R., Smith R. L. A family and population study of the genetic polymorphism of debrisoquine oxidation in a white British population. J Med Genet. 1980 Apr;17(2):102–105. doi: 10.1136/jmg.17.2.102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Evans W. E., Relling M. V. Xbal 16- plus 9-kilobase DNA restriction fragments identify a mutant allele for debrisoquin hydroxylase: report of a family study. Mol Pharmacol. 1990 May;37(5):639–642. [PubMed] [Google Scholar]
  10. Gonzalez F. J., Skoda R. C., Kimura S., Umeno M., Zanger U. M., Nebert D. W., Gelboin H. V., Hardwick J. P., Meyer U. A. Characterization of the common genetic defect in humans deficient in debrisoquine metabolism. Nature. 1988 Feb 4;331(6155):442–446. doi: 10.1038/331442a0. [DOI] [PubMed] [Google Scholar]
  11. Gut J., Catin T., Dayer P., Kronbach T., Zanger U., Meyer U. A. Debrisoquine/sparteine-type polymorphism of drug oxidation. Purification and characterization of two functionally different human liver cytochrome P-450 isozymes involved in impaired hydroxylation of the prototype substrate bufuralol. J Biol Chem. 1986 Sep 5;261(25):11734–11743. [PubMed] [Google Scholar]
  12. Idle J. R., Smith R. L. Polymorphisms of oxidation at carbon centers of drugs and their clinical significance. Drug Metab Rev. 1979;9(2):301–317. doi: 10.3109/03602537908993896. [DOI] [PubMed] [Google Scholar]
  13. Jackson P. R., Tucker G. T., Lennard M. S., Woods H. F. Polymorphic drug oxidation: pharmacokinetic basis and comparison of experimental indices. Br J Clin Pharmacol. 1986 Nov;22(5):541–550. doi: 10.1111/j.1365-2125.1986.tb02933.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jackson P. R., Tucker G. T., Woods H. F. Testing for bimodality in frequency distributions of data suggesting polymorphisms of drug metabolism--histograms and probit plots. Br J Clin Pharmacol. 1989 Dec;28(6):647–653. doi: 10.1111/j.1365-2125.1989.tb03557.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jackson P. R., Tucker G. T., Woods H. F. Testing for bimodality in frequency distributions of data suggesting polymorphisms of drug metabolism--hypothesis testing. Br J Clin Pharmacol. 1989 Dec;28(6):655–662. doi: 10.1111/j.1365-2125.1989.tb03558.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kaisary A., Smith P., Jaczq E., McAllister C. B., Wilkinson G. R., Ray W. A., Branch R. A. Genetic predisposition to bladder cancer: ability to hydroxylate debrisoquine and mephenytoin as risk factors. Cancer Res. 1987 Oct 15;47(20):5488–5493. [PubMed] [Google Scholar]
  17. Lennard M. S., Tucker G. T., Woods H. F. The polymorphic oxidation of beta-adrenoceptor antagonists. Clinical pharmacokinetic considerations. Clin Pharmacokinet. 1986 Jan-Feb;11(1):1–17. doi: 10.2165/00003088-198611010-00001. [DOI] [PubMed] [Google Scholar]
  18. Mahgoub A., Idle J. R., Dring L. G., Lancaster R., Smith R. L. Polymorphic hydroxylation of Debrisoquine in man. Lancet. 1977 Sep 17;2(8038):584–586. doi: 10.1016/s0140-6736(77)91430-1. [DOI] [PubMed] [Google Scholar]
  19. McAllister C. B., Wolfenden H. T., Aslanian W. S., Woosley R. L., Wilkinson G. R. Oxidative metabolism of encainide: polymorphism, pharmacokinetics and clinical considerations. Xenobiotica. 1986 May;16(5):483–490. doi: 10.3109/00498258609050253. [DOI] [PubMed] [Google Scholar]
  20. McBride O. W., Merry D., Givol D. The gene for human p53 cellular tumor antigen is located on chromosome 17 short arm (17p13). Proc Natl Acad Sci U S A. 1986 Jan;83(1):130–134. doi: 10.1073/pnas.83.1.130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Steiner E., Iselius L., Alván G., Lindsten J., Sjöqvist F. A family study of genetic and environmental factors determining polymorphic hydroxylation of debrisoquin. Clin Pharmacol Ther. 1985 Oct;38(4):394–401. doi: 10.1038/clpt.1985.193. [DOI] [PubMed] [Google Scholar]
  22. Turgeon J., Roden D. M. Pharmacokinetic profile of encainide. Clin Pharmacol Ther. 1989 Jun;45(6):692–694. doi: 10.1038/clpt.1989.91. [DOI] [PubMed] [Google Scholar]
  23. Wang T., Roden D. M., Wolfenden H. T., Woosley R. L., Wood A. J., Wilkinson G. R. Influence of genetic polymorphism on the metabolism and disposition of encainide in man. J Pharmacol Exp Ther. 1984 Mar;228(3):605–611. [PubMed] [Google Scholar]
  24. Woosley R. L., Roden D. M., Dai G. H., Wang T., Altenbern D., Oates J., Wilkinson G. R. Co-inheritance of the polymorphic metabolism of encainide and debrisoquin. Clin Pharmacol Ther. 1986 Mar;39(3):282–287. doi: 10.1038/clpt.1986.40. [DOI] [PubMed] [Google Scholar]
  25. Zanger U. M., Vilbois F., Hardwick J. P., Meyer U. A. Absence of hepatic cytochrome P450bufI causes genetically deficient debrisoquine oxidation in man. Biochemistry. 1988 Jul 26;27(15):5447–5454. doi: 10.1021/bi00415a010. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Clinical Pharmacology are provided here courtesy of British Pharmacological Society

RESOURCES