Skip to main content
British Journal of Clinical Pharmacology logoLink to British Journal of Clinical Pharmacology
. 1991 Nov;32(5):551–556. doi: 10.1111/j.1365-2125.1991.tb03950.x

Selective effects of low doses of apomorphine on spatiotemporal contrast sensitivity in healthy volunteers: a double-blind placebo-controlled study.

O Blin 1, D Mestre 1, G Masson 1, G Serratrice 1
PMCID: PMC1368629  PMID: 1954070

Abstract

1. Apomorphine (1 and 5 micrograms kg-1) and placebo were given to nine normal volunteers, using a Latin-square design and double-blind procedures. The visual perception of static and moving patterns (static and motion contrast sensitivity) was evaluated before and 15 min after the dose administration. 2. Apomorphine (1 and 5 micrograms kg-1), as compared with placebo, led to a significant overall reduction of the visual perception of movement. This effect was dose-related, and apomorphine (5 micrograms kg-1) induced a more pronounced decrease in the visual perception of movement than apomorphine (1 microgram kg-1). With apomorphine (5 micrograms kg-1), the reduction was more pronounced for low spatial frequencies, and was linearly inversely correlated to the spatial frequency for a temporal frequency of 3 Hz. Finally, no significant effect of apomorphine was observed for sensitivity to static patterns. 3. Several non exclusive hypotheses may be suggested: The effects of apomorphine may result from stimulation of retinal D1- and/or D2-dopaminergic receptors. Apomorphine may increase the surround inhibition of ganglion cells' receptive-fields. This modification of the centre-surround balance may explain the decrease in contrast sensitivity for low spatial frequencies. The specific effects of apomorphine on the visual perception of movement support the hypothesis that apomorphine preferentially affects the magnocellular pathway which mediates sensitivity to moving patterns.

Full text

PDF
551

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartel P., Blom M., Robinson E., Van der Meyden C., Sommers D. O., Becker P. Effects of chlorpromazine on pattern and flash ERGs and VEPs compared to oxazepam and to placebo in normal subjects. Electroencephalogr Clin Neurophysiol. 1990 Sep-Oct;77(5):330–339. doi: 10.1016/0168-5597(90)90054-h. [DOI] [PubMed] [Google Scholar]
  2. Blin O., Durup M., Pailhous J., Serratrice G. Akathisia, motility, and locomotion in healthy volunteers. Clin Neuropharmacol. 1990 Oct;13(5):426–435. doi: 10.1097/00002826-199010000-00004. [DOI] [PubMed] [Google Scholar]
  3. Blin O., Masson G., Azulay J. P., Fondarai J., Serratrice G. Apomorphine-induced blinking and yawning in healthy volunteers. Br J Clin Pharmacol. 1990 Nov;30(5):769–773. doi: 10.1111/j.1365-2125.1990.tb03848.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bodis-Wollner I., Marx M. S., Mitra S., Bobak P., Mylin L., Yahr M. Visual dysfunction in Parkinson's disease. Loss in spatiotemporal contrast sensitivity. Brain. 1987 Dec;110(Pt 6):1675–1698. doi: 10.1093/brain/110.6.1675. [DOI] [PubMed] [Google Scholar]
  5. Bodis-Wollner I. Visual deficits related to dopamine deficiency in experimental animals and Parkinson's disease patients. Trends Neurosci. 1990 Jul;13(7):296–302. doi: 10.1016/0166-2236(90)90113-o. [DOI] [PubMed] [Google Scholar]
  6. Brann M. R., Young W. S., 3rd Dopamine receptors are located on rods in bovine retina. Neurosci Lett. 1986 Sep 12;69(3):221–226. doi: 10.1016/0304-3940(86)90483-0. [DOI] [PubMed] [Google Scholar]
  7. Bulens C., Meerwaldt J. D., Van der Wildt G. J., Van Deursen J. B. Effect of levodopa treatment on contrast sensitivity in Parkinson's disease. Ann Neurol. 1987 Sep;22(3):365–369. doi: 10.1002/ana.410220313. [DOI] [PubMed] [Google Scholar]
  8. Bulens C., Meerwaldt J. D., van der Wildt G. J., Keemink C. J. Contrast sensitivity in Parkinson's disease. Neurology. 1986 Aug;36(8):1121–1125. doi: 10.1212/wnl.36.8.1121. [DOI] [PubMed] [Google Scholar]
  9. Bulens C., Meerwaldt J. D., van der Wildt G. J., Keemink C. J. Visual contrast sensitivity in drug-induced Parkinsonism. J Neurol Neurosurg Psychiatry. 1989 Mar;52(3):341–345. doi: 10.1136/jnnp.52.3.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Daw N. W., Brunken W. J., Parkinson D. The function of synaptic transmitters in the retina. Annu Rev Neurosci. 1989;12:205–225. doi: 10.1146/annurev.ne.12.030189.001225. [DOI] [PubMed] [Google Scholar]
  11. Domenici L., Trimarchi C., Piccolino M., Fiorentini A., Maffei L. Dopaminergic drugs improve human visual contrast sensitivity. Hum Neurobiol. 1985;4(3):195–197. [PubMed] [Google Scholar]
  12. Dubocovich M. L., Weiner N. Pharmacological differences between the D-2 autoreceptor and the D-1 dopamine receptor in rabbit retina. J Pharmacol Exp Ther. 1985 Jun;233(3):747–754. [PubMed] [Google Scholar]
  13. Enroth-Cugell C., Robson J. G. The contrast sensitivity of retinal ganglion cells of the cat. J Physiol. 1966 Dec;187(3):517–552. doi: 10.1113/jphysiol.1966.sp008107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Filip V., Balík J. Possible indication of dopaminergic blockade in man by electroretinography. Int Pharmacopsychiatry. 1978;13(3):151–156. doi: 10.1159/000468335. [DOI] [PubMed] [Google Scholar]
  15. Frederick J. M., Rayborn M. E., Laties A. M., Lam D. M., Hollyfield J. G. Dopaminergic neurons in the human retina. J Comp Neurol. 1982 Sep 1;210(1):65–79. doi: 10.1002/cne.902100108. [DOI] [PubMed] [Google Scholar]
  16. Ghilardi M. F., Bodis-Wollner I., Onofrj M. C., Marx M. S., Glover A. A. Spatial frequency-dependent abnormalities of the pattern electroretinogram and visual evoked potentials in a parkinsonian monkey model. Brain. 1988 Feb;111(Pt 1):131–149. doi: 10.1093/brain/111.1.131. [DOI] [PubMed] [Google Scholar]
  17. Ghilardi M. F., Chung E., Bodis-Wollner I., Dvorzniak M., Glover A., Onofrj M. Systemic 1-methyl,4-phenyl,1-2-3-6-tetrahydropyridine (MPTP) administration decreases retinal dopamine content in primates. Life Sci. 1988;43(3):255–262. doi: 10.1016/0024-3205(88)90315-3. [DOI] [PubMed] [Google Scholar]
  18. Ghilardi M. F., Marx M. S., Bodis-Wollner I., Camras C. B., Glover A. A. The effect of intraocular 6-hydroxydopamine on retinal processing of primates. Ann Neurol. 1989 Apr;25(4):357–364. doi: 10.1002/ana.410250407. [DOI] [PubMed] [Google Scholar]
  19. HAEGGENDAL J., MALMFORS T. EVIDENCE OF DOPAMINE-CONTAINING NEURONS IN THE RETINA OF RABBITS. Acta Physiol Scand. 1963 Nov;59:295–296. doi: 10.1111/j.1748-1716.1963.tb02744.x. [DOI] [PubMed] [Google Scholar]
  20. Hadjiconstantinou M., Krajnc D., Rossetti Z., Neff N. H. Modulation of dopamine metabolism in the retina via dopamine D2 receptors. Brain Res. 1990 Nov 12;533(1):20–23. doi: 10.1016/0006-8993(90)91790-n. [DOI] [PubMed] [Google Scholar]
  21. Harnois C., Di Paolo T. Decreased dopamine in the retinas of patients with Parkinson's disease. Invest Ophthalmol Vis Sci. 1990 Nov;31(11):2473–2475. [PubMed] [Google Scholar]
  22. Jensen R. J., Daw N. W. Effects of dopamine and its agonists and antagonists on the receptive field properties of ganglion cells in the rabbit retina. Neuroscience. 1986 Mar;17(3):837–855. doi: 10.1016/0306-4522(86)90049-7. [DOI] [PubMed] [Google Scholar]
  23. Livingstone M. S., Hubel D. H. Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J Neurosci. 1987 Nov;7(11):3416–3468. doi: 10.1523/JNEUROSCI.07-11-03416.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. MALMFORS T. Evidence of adrenergic neurons with synaptic terminals in the retina of rats demonstrated with fluorescence and electron microscopy. Acta Physiol Scand. 1963 May;58:99–100. doi: 10.1111/j.1748-1716.1963.tb02632.x. [DOI] [PubMed] [Google Scholar]
  25. Mestre D., Blin O., Serratrice G., Pailhous J. Spatiotemporal contrast sensitivity differs in normal aging and Parkinson's disease. Neurology. 1990 Nov;40(11):1710–1714. doi: 10.1212/wnl.40.11.1710. [DOI] [PubMed] [Google Scholar]
  26. Nguyen-Legros J. Functional neuroarchitecture of the retina: hypothesis on the dysfunction of retinal dopaminergic circuitry in Parkinson's disease. Surg Radiol Anat. 1988;10(2):137–144. doi: 10.1007/BF02307822. [DOI] [PubMed] [Google Scholar]
  27. Nightingale S., Mitchell K. W., Howe J. W. Visual evoked cortical potentials and pattern electroretinograms in Parkinson's disease and control subjects. J Neurol Neurosurg Psychiatry. 1986 Nov;49(11):1280–1287. doi: 10.1136/jnnp.49.11.1280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Purpura K., Kaplan E., Shapley R. M. Background light and the contrast gain of primate P and M retinal ganglion cells. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4534–4537. doi: 10.1073/pnas.85.12.4534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Regan D., Maxner C. Orientation-selective visual loss in patients with Parkinson's disease. Brain. 1987 Apr;110(Pt 2):415–432. doi: 10.1093/brain/110.2.415. [DOI] [PubMed] [Google Scholar]
  30. Shapley R. Visual sensitivity and parallel retinocortical channels. Annu Rev Psychol. 1990;41:635–658. doi: 10.1146/annurev.ps.41.020190.003223. [DOI] [PubMed] [Google Scholar]
  31. Stormann T. M., Gdula D. C., Weiner D. M., Brann M. R. Molecular cloning and expression of a dopamine D2 receptor from human retina. Mol Pharmacol. 1990 Jan;37(1):1–6. [PubMed] [Google Scholar]
  32. Struck L. K., Rodnitzky R. L., Dobson J. K. Circadian fluctuations of contrast sensitivity in Parkinson's disease. Neurology. 1990 Mar;40(3 Pt 1):467–470. doi: 10.1212/wnl.40.3_part_1.467. [DOI] [PubMed] [Google Scholar]
  33. Thier P., Alder V. Action of iontophoretically applied dopamine on cat retinal ganglion cells. Brain Res. 1984 Jan 30;292(1):109–121. doi: 10.1016/0006-8993(84)90895-3. [DOI] [PubMed] [Google Scholar]
  34. Watling K. J., Iversen L. L. Comparison of the binding of [3H]spiperone and [3H]domperidone in homogenates of mammalian retina and caudate nucleus. J Neurochem. 1981 Nov;37(5):1130–1143. doi: 10.1111/j.1471-4159.1981.tb04663.x. [DOI] [PubMed] [Google Scholar]
  35. al-Sereiti M. R., Quik R. F., Turner P. The effect of a single oral dose of pergolide on intraocular pressure and pupil diameter. Br J Clin Pharmacol. 1989 Sep;28(3):263–268. doi: 10.1111/j.1365-2125.1989.tb05425.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Clinical Pharmacology are provided here courtesy of British Pharmacological Society

RESOURCES