Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1963 Nov;169(2):452–465. doi: 10.1113/jphysiol.1963.sp007272

`Transport adenosinetriphosphatase' in electric organ. The relation between ion transport and oxidative phosphorylation

I M Glynn
PMCID: PMC1368769  PMID: 14085500

Full text

PDF
452

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALBERS R. W., KOVAL G. J. Properties of the sodium-dependent ATPase of Electrophorus electricus. Life Sci. 1962 May;1:219–222. doi: 10.1016/0024-3205(62)90022-x. [DOI] [PubMed] [Google Scholar]
  2. AZZONE G. F., ERNSTER L. Compartmentation of mitochondrial phosphorylations as disclosed by studies with arsenate. J Biol Chem. 1961 May;236:1510–1517. [PubMed] [Google Scholar]
  3. CHANCE B. Energy-linked cytochrome oxidation in mitochondria. Nature. 1961 Mar 4;189:719–725. doi: 10.1038/189719b0. [DOI] [PubMed] [Google Scholar]
  4. COOPER C., LEHNINGER A. L. Oxidative phosphorylation by an enzyme complex from extracts of mitochondria. IV. Adenosinetriphosphatase activity. J Biol Chem. 1957 Jan;224(1):547–560. [PubMed] [Google Scholar]
  5. CRANE E. E., DAVIES R. E. Chemical and electrical energy relations for the stomach. Biochem J. 1951 Jul;49(2):169–175. doi: 10.1042/bj0490169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. CRANE R. K., LIPMANN F. The effect of arsenate on aerobic phosphorylation. J Biol Chem. 1953 Mar;201(1):235–243. [PubMed] [Google Scholar]
  7. DUNHAM E. T., GLYNN I. M. Adenosinetriphosphatase activity and the active movements of alkali metal ions. J Physiol. 1961 Apr;156:274–293. doi: 10.1113/jphysiol.1961.sp006675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FRAZIER H. S., KEYNES R. D. The effect of metabolic inhibitors on the sodium fluxes in sodium-loaded frog sartorius muscle. J Physiol. 1959 Oct;148:362–378. doi: 10.1113/jphysiol.1959.sp006293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. GAMBLE J. L., Jr Potassium binding and oxidative phosphorylation in mitochondria and mitochondrial fragments. J Biol Chem. 1957 Oct;228(2):955–971. [PubMed] [Google Scholar]
  10. GLYNN I. M. Sodium and potassium movements in nerve, muscle, and red cells. Int Rev Cytol. 1959;8:449–480. doi: 10.1016/s0074-7696(08)62737-0. [DOI] [PubMed] [Google Scholar]
  11. JARNEFELT J. Properties and possible mechanism of the Na ion and K ion stimulated microsomal adenosinetriphosphatase. Biochim Biophys Acta. 1962 Jun 4;59:643–654. doi: 10.1016/0006-3002(62)90644-3. [DOI] [PubMed] [Google Scholar]
  12. KEYNES R. D., MARTINS-FERREIRA H. Membrane potentials in the electroplates of the electric eel. J Physiol. 1953 Feb 27;119(2-3):315–351. doi: 10.1113/jphysiol.1953.sp004849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. KLINGENBERG M., SCHOLLMEYER P. ATP controlled redox states of respiratory carriers under the influence of DPNH-hydrogen accepting substrates. Biochem Biophys Res Commun. 1961 Apr 7;4:323–327. doi: 10.1016/0006-291x(61)90211-x. [DOI] [PubMed] [Google Scholar]
  14. KULKA R. G., COOPER C. The action of oligomycin on the inorganic orthophosphate-adenosine triphosphate and adenosine diphosphate-adenosine triphosphate exchange reactions of digitonin particles. J Biol Chem. 1962 Mar;237:936–939. [PubMed] [Google Scholar]
  15. LARDY H. A., JOHNSON D., McMURRAY W. C. Antibiotics as tools for metabolic studies. I. A survey of toxic antibiotics in respiratory, phosphorylative and glycolytic systems. Arch Biochem Biophys. 1958 Dec;78(2):587–597. doi: 10.1016/0003-9861(58)90383-7. [DOI] [PubMed] [Google Scholar]
  16. LEAF A., RENSHAW A. Ion transport and respiration of isolated frog skin. Biochem J. 1957 Jan;65(1):82–90. doi: 10.1042/bj0650082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. MAIZELS M. Factors in the active transport of cations. J Physiol. 1951 Jan;112(1-2):59–83. doi: 10.1113/jphysiol.1951.sp004509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. POST R. L., MERRITT C. R., KINSOLVING C. R., ALBRIGHT C. D. Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte. J Biol Chem. 1960 Jun;235:1796–1802. [PubMed] [Google Scholar]
  19. SKOU J. C. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta. 1957 Feb;23(2):394–401. doi: 10.1016/0006-3002(57)90343-8. [DOI] [PubMed] [Google Scholar]
  20. WADKINS C. L. Stimulation of adenosine triphosphatase activity of mitochondria and submitochondrial particles by arsenate. J Biol Chem. 1960 Nov;235:3300–3303. [PubMed] [Google Scholar]
  21. WEIL-MALHERBE H., GREEN R. H. The catalytic effect of molybdate on the hydrolysis of organic phosphate bonds. Biochem J. 1951 Aug;49(3):286–292. [PMC free article] [PubMed] [Google Scholar]
  22. WHITTAM R. The asymmetrical stimulation of a membrane adenosine triphosphatase in relation to active cation transport. Biochem J. 1962 Jul;84:110–118. doi: 10.1042/bj0840110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. ZERAHN K. Oxygen consumption and active sodium transport in the isolated and short-circuited frog skin. Acta Physiol Scand. 1956 May 31;36(4):300–318. doi: 10.1111/j.1748-1716.1956.tb01327.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES