Abstract
The iron regulatory protein (IRP) is a cytoplasmic RNA-binding protein that regulates cellular iron metabolism at the posttranscriptional level. IRP is an unusual bifunctional molecule: in iron-replete cells it predominantly exists as a 4Fe-4S protein and exhibits aconitase enzymatic activity, whereas apo-IRP prevails in iron-starved cells and binds to iron-responsive elements (IREs), structural motifs within the untranslated regions of mRNAs involved in iron metabolism. A related protein with iron-regulated IRE-binding activity, IRPB, was previously identified in rodent cells. IRE-binding by IRP and IRPB is induced by iron deprivation and nitric oxide (NO). Controversial hypotheses have proposed that the induction of IRE-binding activity by iron results either from de novo synthesis of the apo-protein or from a posttranslational conversion of the Fe-S to the apo-protein form. This prompted a detailed analysis of how iron and NO regulate the RNA-binding activities of IRP and IRPB. We demonstrate that IRP is a relatively stable protein (half-life > 12 h). The induction of IRE-binding does not require de novo protein synthesis but results from conversion of Fe-S IRP to apo-IRP. In contrast, IRPB appears less stable in nonstarved cells (half-life approximately 4-6 h) and must be synthesized de novo following iron starvation. Our results furthermore reveal that two RNA-binding proteins with close structural and functional similarities that respond to the same cellular signals are regulated by predominantly different mechanisms.
Full Text
The Full Text of this article is available as a PDF (13.2 MB).
