Skip to main content
RNA logoLink to RNA
. 1996 Sep;2(9):919–927.

Selection of tRNA(Asp) amber suppressor mutants having alanine, arginine, glutamine, and lysine identity.

F Martin 1, J Reinbolt 1, G Dirheimer 1, J Gangloff 1, G Eriani 1
PMCID: PMC1369426  PMID: 8809018

Abstract

Elements that confer identity to a tRNA in the cellular environment, where all aminoacyl-tRNA synthetases are competing for substrates, may be delineated by in vivo experiments using suppressor tRNAs. Here we describe the selection of active Escherichia coli tRNAAsp amber mutants and analyze their identity. Starting from a library containing randomly mutated tRNA(CUA)Asp genes, we isolated four amber suppressors presenting either lysine, alanine, or glutamine activity. Two of them, presenting mainly alanine or lysine activity, were further submitted to a second round of mutagenesis selection in order to improve their efficiency of suppression. Eleven suppressors were isolated, each containing two or three mutations. Ten presented identities of the two parental mutants, whereas one had switched from lysine to arginine identity. Analysis of the different mutants revealed (or confirmed for some nucleotides) their role as positive and/or negative determinants in AlaRS, LysRS, and ArgRS recognition. More generally, it appears that tRNAAsp presents identity characteristics closely related to those of tRNALys, as well as a structural basis for acquiring alanine or arginine identity upon moderate mutational changes; these consist of addition or suppression of the corresponding positive or negative determinants, as well as tertiary interactions. Failure to isolate aspartic acid-inserting suppressors is probably due to elimination of the important G34 identity element and its replacement by an antideterminant when changing the anticodon of the tRNAAsp to the CUA triplet.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).


Articles from RNA are provided here courtesy of The RNA Society

RESOURCES