Skip to main content
RNA logoLink to RNA
. 1997 Jan;3(1):57–67.

Analysis of bacteriophage N protein and peptide binding to boxB RNA using polyacrylamide gel coelectrophoresis (PACE).

C D Cilley 1, J R Williamson 1
PMCID: PMC1369462  PMID: 8990399

Abstract

The antitermination protein N from bacteriophage lambda (Nlambda) interacts with the nut site in its own mRNA, as well as host factors, to facilitate formation of a termination-resistant transcription complex. The conserved, amino-terminal arginine-rich domain of Nlambda protein is known to interact with a small RNA hairpin (boxB) derived from the nut site RNA. We have examined the binding of Nlambda protein, peptides derived from the amino terminus of Nlambda, and the related phage P22 N protein to lambda boxB RNAs. To facilitate the study of complexes that are not amenable to gel retardation assays, a new polyacrylamide affinity coelectrophoresis technique (PACE) was developed. Using the PACE assay, we have demonstrated that a 19-amino acid peptide from the amino terminus of Nlambda protein binds lambda boxB RNA with a Kd,app of 5.2 nM. PACE was also used to study the binding affinity of a number of Nlambda peptide and lambda boxB RNA mutants. The PACE technique is complementary to the traditional gel retardation assay for direct measurement of binding interactions, and will be useful for any procedure that requires a pool of RNAs to be resolved based on their relative affinities for proteins or peptides.

Full Text

The Full Text of this article is available as a PDF (736.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ades S. E., Sauer R. T. Specificity of minor-groove and major-groove interactions in a homeodomain-DNA complex. Biochemistry. 1995 Nov 7;34(44):14601–14608. doi: 10.1021/bi00044a040. [DOI] [PubMed] [Google Scholar]
  2. Beckett D., Uhlenbeck O. C. Ribonucleoprotein complexes of R17 coat protein and a translational operator analog. J Mol Biol. 1988 Dec 20;204(4):927–938. doi: 10.1016/0022-2836(88)90052-6. [DOI] [PubMed] [Google Scholar]
  3. Calnan B. J., Tidor B., Biancalana S., Hudson D., Frankel A. D. Arginine-mediated RNA recognition: the arginine fork. Science. 1991 May 24;252(5009):1167–1171. doi: 10.1126/science.252.5009.1167. [DOI] [PubMed] [Google Scholar]
  4. Cann J. R. Phenomenological theory of gel electrophoresis of protein-nucleic acid complexes. J Biol Chem. 1989 Oct 15;264(29):17032–17040. [PubMed] [Google Scholar]
  5. Carey J. Gel retardation. Methods Enzymol. 1991;208:103–117. doi: 10.1016/0076-6879(91)08010-f. [DOI] [PubMed] [Google Scholar]
  6. Chattopadhyay S., Garcia-Mena J., DeVito J., Wolska K., Das A. Bipartite function of a small RNA hairpin in transcription antitermination in bacteriophage lambda. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):4061–4065. doi: 10.1073/pnas.92.9.4061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chattopadhyay S., Hung S. C., Stuart A. C., Palmer A. G., 3rd, Garcia-Mena J., Das A., Gottesman M. E. Interaction between the phage HK022 Nun protein and the nut RNA of phage lambda. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12131–12135. doi: 10.1073/pnas.92.26.12131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chen L., Frankel A. D. An RNA-binding peptide from bovine immunodeficiency virus Tat protein recognizes an unusual RNA structure. Biochemistry. 1994 Mar 8;33(9):2708–2715. doi: 10.1021/bi00175a046. [DOI] [PubMed] [Google Scholar]
  9. Churcher M. J., Lamont C., Hamy F., Dingwall C., Green S. M., Lowe A. D., Butler J. G., Gait M. J., Karn J. High affinity binding of TAR RNA by the human immunodeficiency virus type-1 tat protein requires base-pairs in the RNA stem and amino acid residues flanking the basic region. J Mol Biol. 1993 Mar 5;230(1):90–110. doi: 10.1006/jmbi.1993.1128. [DOI] [PubMed] [Google Scholar]
  10. Doelling J. H., Franklin N. C. Effects of all single base substitutions in the loop of boxB on antitermination of transcription by bacteriophage lambda's N protein. Nucleic Acids Res. 1989 Jul 25;17(14):5565–5577. doi: 10.1093/nar/17.14.5565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ehresmann C., Baudin F., Mougel M., Romby P., Ebel J. P., Ehresmann B. Probing the structure of RNAs in solution. Nucleic Acids Res. 1987 Nov 25;15(22):9109–9128. doi: 10.1093/nar/15.22.9109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Franklin N. C. "N" transcription antitermination proteins of bacteriophages lambda, phi 21 and P22. J Mol Biol. 1985 Jan 5;181(1):85–91. doi: 10.1016/0022-2836(85)90326-2. [DOI] [PubMed] [Google Scholar]
  13. Franklin N. C. Clustered arginine residues of bacteriophage lambda N protein are essential to antitermination of transcription, but their locale cannot compensate for boxB loop defects. J Mol Biol. 1993 May 20;231(2):343–360. doi: 10.1006/jmbi.1993.1287. [DOI] [PubMed] [Google Scholar]
  14. Franklin N. C., Doelling J. H. Overexpression of N antitermination proteins of bacteriophages lambda, 21, and P22: loss of N protein specificity. J Bacteriol. 1989 May;171(5):2513–2522. doi: 10.1128/jb.171.5.2513-2522.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gale A. J., Schimmel P. Isolated RNA binding domain of a class I tRNA synthetase. Biochemistry. 1995 Jul 11;34(27):8896–8903. doi: 10.1021/bi00027a042. [DOI] [PubMed] [Google Scholar]
  16. Greenblatt J., Nodwell J. R., Mason S. W. Transcriptional antitermination. Nature. 1993 Jul 29;364(6436):401–406. doi: 10.1038/364401a0. [DOI] [PubMed] [Google Scholar]
  17. Horejsí V. Review: Affinity electrophoresis. Anal Biochem. 1981 Mar 15;112(1):1–8. doi: 10.1016/0003-2697(81)90252-9. [DOI] [PubMed] [Google Scholar]
  18. Lazinski D., Grzadzielska E., Das A. Sequence-specific recognition of RNA hairpins by bacteriophage antiterminators requires a conserved arginine-rich motif. Cell. 1989 Oct 6;59(1):207–218. doi: 10.1016/0092-8674(89)90882-9. [DOI] [PubMed] [Google Scholar]
  19. Lee M. K., Lander A. D. Analysis of affinity and structural selectivity in the binding of proteins to glycosaminoglycans: development of a sensitive electrophoretic approach. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2768–2772. doi: 10.1073/pnas.88.7.2768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lim W. A., Sauer R. T., Lander A. D. Analysis of DNA-protein interactions by affinity coelectrophoresis. Methods Enzymol. 1991;208:196–210. doi: 10.1016/0076-6879(91)08014-9. [DOI] [PubMed] [Google Scholar]
  21. Nedved M. L., Moe G. R. Cooperative, non-specific binding of a zinc finger peptide to DNA. Nucleic Acids Res. 1994 Nov 11;22(22):4705–4711. doi: 10.1093/nar/22.22.4705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Puglisi J. D., Chen L., Blanchard S., Frankel A. D. Solution structure of a bovine immunodeficiency virus Tat-TAR peptide-RNA complex. Science. 1995 Nov 17;270(5239):1200–1203. doi: 10.1126/science.270.5239.1200. [DOI] [PubMed] [Google Scholar]
  23. Puglisi J. D., Tan R., Calnan B. J., Frankel A. D., Williamson J. R. Conformation of the TAR RNA-arginine complex by NMR spectroscopy. Science. 1992 Jul 3;257(5066):76–80. doi: 10.1126/science.1621097. [DOI] [PubMed] [Google Scholar]
  24. Robert J., Sloan S. B., Weisberg R. A., Gottesman M. E., Robledo R., Harbrecht D. The remarkable specificity of a new transcription termination factor suggests that the mechanisms of termination and antitermination are similar. Cell. 1987 Nov 6;51(3):483–492. doi: 10.1016/0092-8674(87)90644-1. [DOI] [PubMed] [Google Scholar]
  25. Roberts J. W. Phage lambda and the regulation of transcription termination. Cell. 1988 Jan 15;52(1):5–6. doi: 10.1016/0092-8674(88)90523-5. [DOI] [PubMed] [Google Scholar]
  26. Roberts J. W. RNA and protein elements of E. coli and lambda transcription antitermination complexes. Cell. 1993 Mar 12;72(5):653–655. doi: 10.1016/0092-8674(93)90394-6. [DOI] [PubMed] [Google Scholar]
  27. Salstrom J. S., Szybalski W. Coliphage lambdanutL-: a unique class of mutants defective in the site of gene N product utilization for antitermination of leftward transcription. J Mol Biol. 1978 Sep 5;124(1):195–221. doi: 10.1016/0022-2836(78)90156-0. [DOI] [PubMed] [Google Scholar]
  28. Schumacher T. N., Mayr L. M., Minor D. L., Jr, Milhollen M. A., Burgess M. W., Kim P. S. Identification of D-peptide ligands through mirror-image phage display. Science. 1996 Mar 29;271(5257):1854–1857. doi: 10.1126/science.271.5257.1854. [DOI] [PubMed] [Google Scholar]
  29. Tan R., Chen L., Buettner J. A., Hudson D., Frankel A. D. RNA recognition by an isolated alpha helix. Cell. 1993 Jun 4;73(5):1031–1040. doi: 10.1016/0092-8674(93)90280-4. [DOI] [PubMed] [Google Scholar]
  30. Tan R., Frankel A. D. Structural variety of arginine-rich RNA-binding peptides. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5282–5286. doi: 10.1073/pnas.92.12.5282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tuerk C., Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990 Aug 3;249(4968):505–510. doi: 10.1126/science.2200121. [DOI] [PubMed] [Google Scholar]
  32. Valegård K., Murray J. B., Stockley P. G., Stonehouse N. J., Liljas L. Crystal structure of an RNA bacteriophage coat protein-operator complex. Nature. 1994 Oct 13;371(6498):623–626. doi: 10.1038/371623a0. [DOI] [PubMed] [Google Scholar]
  33. Weeks K. M., Ampe C., Schultz S. C., Steitz T. A., Crothers D. M. Fragments of the HIV-1 Tat protein specifically bind TAR RNA. Science. 1990 Sep 14;249(4974):1281–1285. doi: 10.1126/science.2205002. [DOI] [PubMed] [Google Scholar]
  34. Weeks K. M., Crothers D. M. RNA recognition by Tat-derived peptides: interaction in the major groove? Cell. 1991 Aug 9;66(3):577–588. doi: 10.1016/0092-8674(81)90020-9. [DOI] [PubMed] [Google Scholar]
  35. Wyatt J. R., Chastain M., Puglisi J. D. Synthesis and purification of large amounts of RNA oligonucleotides. Biotechniques. 1991 Dec;11(6):764–769. [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES