Skip to main content
RNA logoLink to RNA
. 1997 Jan;3(1):68–74.

The genetic stability of potato spindle tuber viroid (PSTVd) molecular variants.

A Góra-Sochacka 1, A Kierzek 1, T Candresse 1, W Zagórski 1
PMCID: PMC1369463  PMID: 8990400

Abstract

RNA viruses propagate as a population of genetically related entities composing a quasi-species. Specific representatives are the result of both a high mutation rate during replication and competition between the continuously arising sequence variants. Similar to other RNA pathogens, potato spindle tuber viroid (PSTVd) propagates as a population of similar but nonidentical sequences. The sequence of progeny molecules derived from cloned molecular variants of PSTVd were studied after one and six consecutive plant passages. Although the severe parental sequence S23 was found to be genetically stable, all five other parental sequences analyzed, irrespective of their pathogenicity, led to the appearance of complex populations. Divergence of the progeny was observed at the sequence level, but also, more surprisingly, at the level of the pathogenicity of individual progeny molecules. In two cases, the parental sequence was retained in the progeny population. In the other cases, it was completely out-competed and eliminated, sometimes in as little as one plant passage. Although it has been observed previously that artificially mutated PSTVd molecules may revert rapidly to the wild-type sequence, this study presents direct evidence for the rapid evolution of naturally occurring PSTVd sequence variants.

Full Text

The Full Text of this article is available as a PDF (765.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Branch A. D., Benenfeld B. J., Franck E. R., Shaw J. F., Varban M. L., Willis K. K., Rosen D. L., Robertson H. D. Interference between coinoculated viroids. Virology. 1988 Apr;163(2):538–546. doi: 10.1016/0042-6822(88)90294-2. [DOI] [PubMed] [Google Scholar]
  2. Eigen M. The origin of genetic information: viruses as models. Gene. 1993 Dec 15;135(1-2):37–47. doi: 10.1016/0378-1119(93)90047-7. [DOI] [PubMed] [Google Scholar]
  3. Eigen M., Winkler-Oswatitsch R. Statistical geometry on sequence space. Methods Enzymol. 1990;183:505–530. doi: 10.1016/0076-6879(90)83034-7. [DOI] [PubMed] [Google Scholar]
  4. Gross H. J., Domdey H., Lossow C., Jank P., Raba M., Alberty H., Sänger H. L. Nucleotide sequence and secondary structure of potato spindle tuber viroid. Nature. 1978 May 18;273(5659):203–208. doi: 10.1038/273203a0. [DOI] [PubMed] [Google Scholar]
  5. Gross H. J., Liebl U., Alberty H., Krupp G., Domdey H., Ramm K., Sänger H. L. A severe and a mild potato spindle tuber viroid isolate differ in three nucleotide exchanges only. Biosci Rep. 1981 Mar;1(3):235–241. doi: 10.1007/BF01114910. [DOI] [PubMed] [Google Scholar]
  6. Gruner R., Fels A., Qu F., Zimmat R., Steger G., Riesner D. Interdependence of pathogenicity and replicability with potato spindle tuber viroid. Virology. 1995 May 10;209(1):60–69. doi: 10.1006/viro.1995.1230. [DOI] [PubMed] [Google Scholar]
  7. Góra A., Candresse T., Zagórski W. Analysis of the population structure of three phenotypically different PSTVd isolates. Arch Virol. 1994;138(3-4):233–245. doi: 10.1007/BF01379128. [DOI] [PubMed] [Google Scholar]
  8. Góra A., Candresse T., Zagórski W. Use of intramolecular chimeras to map molecular determinants of symptom severity of potato spindle tuber viroid (PSTVd). Arch Virol. 1996;141(11):2045–2055. doi: 10.1007/BF01718214. [DOI] [PubMed] [Google Scholar]
  9. Hammond R. W. Agrobacterium-mediated inoculation of PSTVd cDNAs onto tomato reveals the biological effect of apparently lethal mutations. Virology. 1994 May 15;201(1):36–45. doi: 10.1006/viro.1994.1263. [DOI] [PubMed] [Google Scholar]
  10. Hammond R. W. Analysis of the virulence modulating region of potato spindle tuber viroid (PSTVd) by site-directed mutagenesis. Virology. 1992 Apr;187(2):654–662. doi: 10.1016/0042-6822(92)90468-5. [DOI] [PubMed] [Google Scholar]
  11. Hammond R. W., Owens R. A. Mutational analysis of potato spindle tuber viroid reveals complex relationships between structure and infectivity. Proc Natl Acad Sci U S A. 1987 Jun;84(12):3967–3971. doi: 10.1073/pnas.84.12.3967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Herold T., Haas B., Singh R. P., Boucher A., Sänger H. L. Sequence analysis of five new field isolates demonstrates that the chain length of potato spindle tuber viroid (PSTVd) is not strictly conserved but as variable as in other viroids. Plant Mol Biol. 1992 May;19(2):329–333. doi: 10.1007/BF00027356. [DOI] [PubMed] [Google Scholar]
  13. Hu Y., Feldstein P. A., Bottino P. J., Owens R. A. Role of the variable domain in modulating potato spindle tuber viroid replication. Virology. 1996 May 1;219(1):45–56. doi: 10.1006/viro.1996.0221. [DOI] [PubMed] [Google Scholar]
  14. Keese P., Symons R. H. Domains in viroids: evidence of intermolecular RNA rearrangements and their contribution to viroid evolution. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4582–4586. doi: 10.1073/pnas.82.14.4582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lakshman D. K., Tavantzis S. M. Primary and secondary structure of a 360-nucleotide isolate of potato spindle tuber viroid. Arch Virol. 1993;128(3-4):319–331. doi: 10.1007/BF01309442. [DOI] [PubMed] [Google Scholar]
  16. Loss P., Schmitz M., Steger G., Riesner D. Formation of a thermodynamically metastable structure containing hairpin II is critical for infectivity of potato spindle tuber viroid RNA. EMBO J. 1991 Mar;10(3):719–727. doi: 10.1002/j.1460-2075.1991.tb08002.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Owens R. A., Chen W., Hu Y., Hsu Y. H. Suppression of potato spindle tuber viroid replication and symptom expression by mutations which stabilize the pathogenicity domain. Virology. 1995 Apr 20;208(2):554–564. doi: 10.1006/viro.1995.1186. [DOI] [PubMed] [Google Scholar]
  18. Owens R. A., Steger G., Hu Y., Fels A., Hammond R. W., Riesner D. RNA structural features responsible for potato spindle tuber viroid pathogenicity. Virology. 1996 Aug 1;222(1):144–158. doi: 10.1006/viro.1996.0405. [DOI] [PubMed] [Google Scholar]
  19. Owens R. A., Thompson S. M., Steger G. Effects of random mutagenesis upon potato spindle tuber viroid replication and symptom expression. Virology. 1991 Nov;185(1):18–31. doi: 10.1016/0042-6822(91)90749-2. [DOI] [PubMed] [Google Scholar]
  20. Polivka H., Staub U., Gross H. J. Variation of viroid profiles in individual grapevine plants: novel grapevine yellow speckle viroid 1 mutants show alterations of hairpin I. J Gen Virol. 1996 Jan;77(Pt 1):155–161. doi: 10.1099/0022-1317-77-1-155. [DOI] [PubMed] [Google Scholar]
  21. Qu F., Heinrich C., Loss P., Steger G., Tien P., Riesner D. Multiple pathways of reversion in viroids for conservation of structural elements. EMBO J. 1993 May;12(5):2129–2139. doi: 10.1002/j.1460-2075.1993.tb05861.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rakowski A. G., Symons R. H. Comparative sequence studies of variants of avocado sunblotch viroid. Virology. 1989 Nov;173(1):352–356. doi: 10.1016/0042-6822(89)90256-0. [DOI] [PubMed] [Google Scholar]
  23. Riesner D., Gross H. J. Viroids. Annu Rev Biochem. 1985;54:531–564. doi: 10.1146/annurev.bi.54.070185.002531. [DOI] [PubMed] [Google Scholar]
  24. Rigden J. E., Rezaian M. A. Analysis of sequence variation in grapevine yellow speckle viroid 1 reveals two distinct alternative structures for the pathogenic domain. Virology. 1993 Mar;193(1):474–477. doi: 10.1016/s0042-6822(15)80001-4. [DOI] [PubMed] [Google Scholar]
  25. Schnölzer M., Haas B., Raam K., Hofmann H., Sänger H. L. Correlation between structure and pathogenicity of potato spindle tuber viroid (PSTV). EMBO J. 1985 Sep;4(9):2181–2190. doi: 10.1002/j.1460-2075.1985.tb03913.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tabler M., Sänger H. L. Cloned single- and double-stranded DNA copies of potato spindle tuber viroid (PSTV) RNA and co-inoculated subgenomic DNA fragments are infectious. EMBO J. 1984 Dec 20;3(13):3055–3062. doi: 10.1002/j.1460-2075.1984.tb02257.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Visvader J. E., Symons R. H. Eleven new sequence variants of citrus exocortis viroid and the correlation of sequence with pathogenicity. Nucleic Acids Res. 1985 Apr 25;13(8):2907–2920. doi: 10.1093/nar/13.8.2907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Visvader Jane E., Symons Robert H. Replication of in vitro constructed viroid mutants: location of the pathogenicity-modulating domain of citrus exocortis viroid. EMBO J. 1986 Sep;5(9):2051–2055. doi: 10.1002/j.1460-2075.1986.tb04465.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wassenegger M., Heimes S., Sänger H. L. An infectious viroid RNA replicon evolved from an in vitro-generated non-infectious viroid deletion mutant via a complementary deletion in vivo. EMBO J. 1994 Dec 15;13(24):6172–6177. doi: 10.1002/j.1460-2075.1994.tb06964.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wełnicki M., Skrzeczkowski J., Sołtyńska A., Jończyk P., Markiewicz W., Kierzek R., Imiołczyk B., Zagórski W. Characterisation of synthetic DNA probe detecting potato spindle tuber viroid. J Virol Methods. 1989 Apr-May;24(1-2):141–152. doi: 10.1016/0166-0934(89)90016-5. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES