Skip to main content
RNA logoLink to RNA
. 1997 Jan;3(1):89–103.

Probing the structure of the Escherichia coli 10Sa RNA (tmRNA).

B Felden 1, H Himeno 1, A Muto 1, J P McCutcheon 1, J F Atkins 1, R F Gesteland 1
PMCID: PMC1369465  PMID: 8990402

Abstract

The conformation of the Escherichia coli 10Sa RNA (tmRNA) in solution was investigated using chemical and enzymatic probes. Single- and double-stranded domains were identified by hydrolysis of tmRNA in imidazole buffer and by lead(II)-induced cleavages. Ribonucleases T1 and S1 were used to map unpaired nucleotides and ribonuclease V1 was used to identify paired bases or stacked nucleotides. Specific atomic positions of bases were probed with dimethylsulfate, a carbodiimide, and diethylpyrocarbonate. Covariations, identified by sequence alignment with nine other tmRNA sequences, suggest the presence of several tertiary interactions, including pseudoknots. Temperature-gradient gel electrophoresis experiments showed structural transitions of tmRNA starting around 40 degrees C, and enzymatic probing performed at selected temperatures revealed the progressive melting of several predicted interactions. Based on these data, a secondary structure is proposed, containing two stems, four stem-loops, four pseudoknots, and an unstable structural domain, some connected by single-stranded A-rich sequence stretches. A tRNA-like domain, including an already reported acceptor branch, is supported by the probing data. A second structural domain encompasses the coding sequence, which extends from the top of one stem-loop to the top of another, with a 7-nt single-stranded stretch between. A third structural module containing pseudoknots connects and probably orients the tRNA-like domain and the coding sequence. Several discrepancies between the probing data and the phylogeny suggest that E. coli tmRNA undergoes a conformational change.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkins J. F., Gesteland R. F. A case for trans translation. Nature. 1996 Feb 29;379(6568):769–771. doi: 10.1038/379769a0. [DOI] [PubMed] [Google Scholar]
  2. Brierley I. Ribosomal frameshifting viral RNAs. J Gen Virol. 1995 Aug;76(Pt 8):1885–1892. doi: 10.1099/0022-1317-76-8-1885. [DOI] [PubMed] [Google Scholar]
  3. Brown J. W., Hunt D. A., Pace N. R. Nucleotide sequence of the 10Sa RNA gene of the beta-purple eubacterium Alcaligenes eutrophus. Nucleic Acids Res. 1990 May 11;18(9):2820–2820. doi: 10.1093/nar/18.9.2820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown R. S., Hingerty B. E., Dewan J. C., Klug A. Pb(II)-catalysed cleavage of the sugar-phosphate backbone of yeast tRNAPhe--implications for lead toxicity and self-splicing RNA. Nature. 1983 Jun 9;303(5917):543–546. doi: 10.1038/303543a0. [DOI] [PubMed] [Google Scholar]
  5. Chauhan A. K., Apirion D. The gene for a small stable RNA (10Sa RNA) of Escherichia coli. Mol Microbiol. 1989 Nov;3(11):1481–1485. doi: 10.1111/j.1365-2958.1989.tb00133.x. [DOI] [PubMed] [Google Scholar]
  6. Dam E., Pleij K., Draper D. Structural and functional aspects of RNA pseudoknots. Biochemistry. 1992 Dec 1;31(47):11665–11676. doi: 10.1021/bi00162a001. [DOI] [PubMed] [Google Scholar]
  7. England T. E., Uhlenbeck O. C. Enzymatic oligoribonucleotide synthesis with T4 RNA ligase. Biochemistry. 1978 May 30;17(11):2069–2076. doi: 10.1021/bi00604a008. [DOI] [PubMed] [Google Scholar]
  8. Felden B., Atkins J. F., Gesteland R. F. tRNA and mRNA both in the same molecule. Nat Struct Biol. 1996 Jun;3(6):494–494. doi: 10.1038/nsb0696-494. [DOI] [PubMed] [Google Scholar]
  9. Felden B., Florentz C., Giegé R., Westhof E. A central pseudoknotted three-way junction imposes tRNA-like mimicry and the orientation of three 5' upstream pseudoknots in the 3' terminus of tobacco mosaic virus RNA. RNA. 1996 Mar;2(3):201–212. [PMC free article] [PubMed] [Google Scholar]
  10. Felden B., Florentz C., Giegé R., Westhof E. Solution structure of the 3'-end of brome mosaic virus genomic RNAs. Conformational mimicry with canonical tRNAs. J Mol Biol. 1994 Jan 14;235(2):508–531. doi: 10.1006/jmbi.1994.1010. [DOI] [PubMed] [Google Scholar]
  11. Fleischmann R. D., Adams M. D., White O., Clayton R. A., Kirkness E. F., Kerlavage A. R., Bult C. J., Tomb J. F., Dougherty B. A., Merrick J. M. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995 Jul 28;269(5223):496–512. doi: 10.1126/science.7542800. [DOI] [PubMed] [Google Scholar]
  12. Francklyn C., Schimmel P. Aminoacylation of RNA minihelices with alanine. Nature. 1989 Feb 2;337(6206):478–481. doi: 10.1038/337478a0. [DOI] [PubMed] [Google Scholar]
  13. Fraser C. M., Gocayne J. D., White O., Adams M. D., Clayton R. A., Fleischmann R. D., Bult C. J., Kerlavage A. R., Sutton G., Kelley J. M. The minimal gene complement of Mycoplasma genitalium. Science. 1995 Oct 20;270(5235):397–403. doi: 10.1126/science.270.5235.397. [DOI] [PubMed] [Google Scholar]
  14. Gutell R. R., Noller H. F., Woese C. R. Higher order structure in ribosomal RNA. EMBO J. 1986 May;5(5):1111–1113. doi: 10.1002/j.1460-2075.1986.tb04330.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Henco K., Harders J., Wiese U., Riesner D. Temperature gradient gel electrophoresis (TGGE) for the detection of polymorphic DNA and RNA. Methods Mol Biol. 1994;31:211–228. doi: 10.1385/0-89603-258-2:211. [DOI] [PubMed] [Google Scholar]
  16. Jentsch S. When proteins receive deadly messages at birth. Science. 1996 Feb 16;271(5251):955–956. doi: 10.1126/science.271.5251.955. [DOI] [PubMed] [Google Scholar]
  17. Keiler K. C., Waller P. R., Sauer R. T. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science. 1996 Feb 16;271(5251):990–993. doi: 10.1126/science.271.5251.990. [DOI] [PubMed] [Google Scholar]
  18. Komine Y., Inokuchi H. Physical map locations of the genes that encode small stable RNAs in Escherichia coli. J Bacteriol. 1991 Sep;173(17):5252–5252. doi: 10.1128/jb.173.17.5252.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Komine Y., Kitabatake M., Yokogawa T., Nishikawa K., Inokuchi H. A tRNA-like structure is present in 10Sa RNA, a small stable RNA from Escherichia coli. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9223–9227. doi: 10.1073/pnas.91.20.9223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Krzyzosiak W. J., Marciniec T., Wiewiorowski M., Romby P., Ebel J. P., Giegé R. Characterization of the lead(II)-induced cleavages in tRNAs in solution and effect of the Y-base removal in yeast tRNAPhe. Biochemistry. 1988 Jul 26;27(15):5771–5777. doi: 10.1021/bi00415a056. [DOI] [PubMed] [Google Scholar]
  21. Lee S. Y., Bailey S. C., Apirion D. Small stable RNAs from Escherichia coli: evidence for the existence of new molecules and for a new ribonucleoprotein particle containing 6S RNA. J Bacteriol. 1978 Feb;133(2):1015–1023. doi: 10.1128/jb.133.2.1015-1023.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Oh B. K., Apirion D. 10Sa RNA, a small stable RNA of Escherichia coli, is functional. Mol Gen Genet. 1991 Sep;229(1):52–56. doi: 10.1007/BF00264212. [DOI] [PubMed] [Google Scholar]
  23. Okimoto R., Wolstenholme D. R. A set of tRNAs that lack either the T psi C arm or the dihydrouridine arm: towards a minimal tRNA adaptor. EMBO J. 1990 Oct;9(10):3405–3411. doi: 10.1002/j.1460-2075.1990.tb07542.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Peattie D. A., Gilbert W. Chemical probes for higher-order structure in RNA. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4679–4682. doi: 10.1073/pnas.77.8.4679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ray B. K., Apirion D. Characterization of 10S RNA: a new stable rna molecule from Escherichia coli. Mol Gen Genet. 1979 Jul 2;174(1):25–32. doi: 10.1007/BF00433301. [DOI] [PubMed] [Google Scholar]
  26. Romby P., Moras D., Dumas P., Ebel J. P., Giegé R. Comparison of the tertiary structure of yeast tRNA(Asp) and tRNA(Phe) in solution. Chemical modification study of the bases. J Mol Biol. 1987 May 5;195(1):193–204. doi: 10.1016/0022-2836(87)90336-6. [DOI] [PubMed] [Google Scholar]
  27. Rosenbaum V., Riesner D. Temperature-gradient gel electrophoresis. Thermodynamic analysis of nucleic acids and proteins in purified form and in cellular extracts. Biophys Chem. 1987 May 9;26(2-3):235–246. doi: 10.1016/0301-4622(87)80026-1. [DOI] [PubMed] [Google Scholar]
  28. Silberklang M., Prochiantz A., Haenni A. L., Rajbhandary U. L. Studies on the sequence of the 3'-terminal region of turnip-yellow-mosaic-virus RNA. Eur J Biochem. 1977 Feb;72(3):465–478. doi: 10.1111/j.1432-1033.1977.tb11270.x. [DOI] [PubMed] [Google Scholar]
  29. Tu G. F., Reid G. E., Zhang J. G., Moritz R. L., Simpson R. J. C-terminal extension of truncated recombinant proteins in Escherichia coli with a 10Sa RNA decapeptide. J Biol Chem. 1995 Apr 21;270(16):9322–9326. doi: 10.1074/jbc.270.16.9322. [DOI] [PubMed] [Google Scholar]
  30. Tyagi J. S., Kinger A. K. Identification of the 10Sa RNA structural gene of Mycobacterium tuberculosis. Nucleic Acids Res. 1992 Jan 11;20(1):138–138. doi: 10.1093/nar/20.1.138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ushida C., Himeno H., Watanabe T., Muto A. tRNA-like structures in 10Sa RNAs of Mycoplasma capricolum and Bacillus subtilis. Nucleic Acids Res. 1994 Aug 25;22(16):3392–3396. doi: 10.1093/nar/22.16.3392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vlassov V. V., Zuber G., Felden B., Behr J. P., Giegé R. Cleavage of tRNA with imidazole and spermine imidazole constructs: a new approach for probing RNA structure. Nucleic Acids Res. 1995 Aug 25;23(16):3161–3167. doi: 10.1093/nar/23.16.3161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Werner C., Krebs B., Keith G., Dirheimer G. Specific cleavages of pure tRNAs by plumbous ions. Biochim Biophys Acta. 1976 May 3;432(2):161–175. doi: 10.1016/0005-2787(76)90158-1. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES