Skip to main content
RNA logoLink to RNA
. 1997 Sep;3(9):1037–1051.

Mutagenesis and comparative sequence analysis of a base triple joining the two domains of group I ribozymes.

M A Tanner 1, E M Anderson 1, R R Gutell 1, T R Cech 1
PMCID: PMC1369549  PMID: 9292502

Abstract

Tertiary interactions are important in the higher-order folding of catalytic RNAs. Recently, a base triple, joining the two major domains of the catalytic core, was determined in group I introns from the cyanobacterium Anabaena PCC7120 and the eukaryote Tetrahymena thermophila. This base triple involves the fifth base pair of P4 and the fifth base of the single-stranded region J8/7. We made base pair and single-nucleotide substitutions in the fifth base pair of P4, a G-C in the wild-type Anabaena intron, and tested them for self-splicing activity. The results suggest a hydrogen bonding model in which only the C of the base pair interacts directly with the fifth base of J8/7. Comparative sequence analysis was used to determine the different combinations of base triples that occur in approximately 450 natural group I introns identified to date. About 94% of the base triples analyzed are compatible with the proposed hydrogen bonding model. Disrupting this base triple in the Tetrahymena intron resulted in the disappearance of splicing intermediates (intron 3' exon and 5' exon), even though the first step of splicing was not affected. Restoration of the base triple by a compensatory mutation reverted the intermediates to wild-type levels. These results suggest that disruption of the base triple increases the rate of the second step of splicing or of a conformational change preceding the second step. Repositioning of the base triple to form a new set of interactions may be required for the second step of splicing.

Full Text

The Full Text of this article is available as a PDF (19.7 MB).


Articles from RNA are provided here courtesy of The RNA Society

RESOURCES