Skip to main content
RNA logoLink to RNA
. 1998 Jan;4(1):24–37.

Structural requirements for enzymatic formation of threonylcarbamoyladenosine (t6A) in tRNA: an in vivo study with Xenopus laevis oocytes.

A Morin 1, S Auxilien 1, B Senger 1, R Tewari 1, H Grosjean 1
PMCID: PMC1369593  PMID: 9436905

Abstract

We have investigated the specificity of the eukaryotic enzymatic machinery that transforms adenosine at position 37 (3' adjacent to anticodon) of several tRNAs into threonylcarbamoyladenosine (t6A37). To this end, 28 variants of yeast initiator tRNAMet and yeast tRNAVal, devoid of modified nucleotide, were produced by in vitro transcription with T7 polymerase of the corresponding synthetic tRNA genes and microinjected into the cytoplasm of Xenopus laevis oocytes. Threonylcarbamoyl incorporation was analyzed in tRNA transcripts mutated in the anticodon loop by substitution, deletion, or Insertion of nucleotides, or in the overall 3D structure of the tRNA by altering critical tertiary interactions. Specifically, we tested the effects of altering ribonucleotides in the anticodon loop, changes of the loop size, perturbations of the overall tRNA 3D structure due to mutations disruptive of the tertiary base pairs, and truncated tRNAs. The results indicate that, in addition to the targeted A37, only U36 was absolutely required. However, A38 in the anticodon loop considerably facilitates the quantitative conversion of A37 into t6A37 catalyzed by the enzymes present in X. laevis. The anticodon positions 34 and 35 were absolutely "neutral" and can accept any of the four canonical nucleotides A, U, C, or G. The anticodon loop size may vary from six to eight nucleotides, and the anticodon stem may have one mismatch pair of the type AxC or GxU at location 30-40 without affecting the efficiency of t6A37 formation and still t6A37 is efficiently formed. Although threonylcarbamoylation of A37 occurred with tRNA having limited perturbations of 3D structure, the overall L-shaped architecture of the tRNA substrate was required for efficient enzymatic conversion of A37 to t6A37. These results favor the idea that unique enzymatic machinery located in the oocyte cytoplasm catalyzes the formation of t6A37 in all U36A37-containing tRNAs (anticodon NNU). Microinjection of the yeast tRNAMeti into the cytoplasm of X. laevis oocytes also revealed the enzymatic activities for several other nucleotide modifications, respectively m1Gg, m2G10, m(2)2G26, m7G46, D47, m5C48/49, and m1A58.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson S., Bankier A. T., Barrell B. G., de Bruijn M. H., Coulson A. R., Drouin J., Eperon I. C., Nierlich D. P., Roe B. A., Sanger F. Sequence and organization of the human mitochondrial genome. Nature. 1981 Apr 9;290(5806):457–465. doi: 10.1038/290457a0. [DOI] [PubMed] [Google Scholar]
  2. Arcari P., Brownlee G. G. The nucleotide sequence of a small (3S) seryl-tRNA (anticodon GCU) from beef heart mitochondria. Nucleic Acids Res. 1980 Nov 25;8(22):5207–5212. doi: 10.1093/nar/8.22.5207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Auxilien S., Crain P. F., Trewyn R. W., Grosjean H. Mechanism, specificity and general properties of the yeast enzyme catalysing the formation of inosine 34 in the anticodon of transfer RNA. J Mol Biol. 1996 Oct 4;262(4):437–458. doi: 10.1006/jmbi.1996.0527. [DOI] [PubMed] [Google Scholar]
  4. Basavappa R., Sigler P. B. The 3 A crystal structure of yeast initiator tRNA: functional implications in initiator/elongator discrimination. EMBO J. 1991 Oct;10(10):3105–3111. doi: 10.1002/j.1460-2075.1991.tb07864.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Björk G. R. Genetic dissection of synthesis and function of modified nucleosides in bacterial transfer RNA. Prog Nucleic Acid Res Mol Biol. 1995;50:263–338. doi: 10.1016/s0079-6603(08)60817-x. [DOI] [PubMed] [Google Scholar]
  6. Bratty J., Wu T. F., Nicoghosian K., Ogilvie K. K., Perreault J. P., Keith G., Cedergren R. Characterization of a chemically synthesized RNA having the sequence of the yeast initiator tRNA(Met). FEBS Lett. 1990 Aug 20;269(1):60–64. doi: 10.1016/0014-5793(90)81118-8. [DOI] [PubMed] [Google Scholar]
  7. Chheda G. B., Hong C. I., Piskorz C. F., Harmon G. A. Biosynthesis of N-(purin-6-ylcarbamoyl)-L-threonine riboside. Incorporation of L-threonine in vivo into modified nucleoside of transfer ribonucleic acid. Biochem J. 1972 Apr;127(3):515–519. doi: 10.1042/bj1270515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Droogmans L., Grosjean H. Enzymatic conversion of guanosine 3' adjacent to the anticodon of yeast tRNAPhe to N1-methylguanosine and the wye nucleoside: dependence on the anticodon sequence. EMBO J. 1987 Feb;6(2):477–483. doi: 10.1002/j.1460-2075.1987.tb04778.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Droogmans L., Haumont E., de Henau S., Grosjean H. Enzymatic 2'-O-methylation of the wobble nucleoside of eukaryotic tRNAPhe: specificity depends on structural elements outside the anticodon loop. EMBO J. 1986 May;5(5):1105–1109. doi: 10.1002/j.1460-2075.1986.tb04329.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Edqvist J., Stråby K. B., Grosjean H. Enzymatic formation of N2,N2-dimethylguanosine in eukaryotic tRNA: importance of the tRNA architecture. Biochimie. 1995;77(1-2):54–61. doi: 10.1016/0300-9084(96)88104-1. [DOI] [PubMed] [Google Scholar]
  11. Elkins B. N., Keller E. B. The enzymatic synthesis of N-(purin-6-ylcarbamoyl)threonine, an anticodon-adjacent base in transfer ribonucleic acid. Biochemistry. 1974 Oct 22;13(22):4622–4628. doi: 10.1021/bi00719a024. [DOI] [PubMed] [Google Scholar]
  12. Grosjean H., Cedergren R. J., McKay W. Structure in tRNA data. Biochimie. 1982 Jun;64(6):387–397. doi: 10.1016/s0300-9084(82)80576-2. [DOI] [PubMed] [Google Scholar]
  13. Grosjean H., De Henau S., Doi T., Yamane A., Ohtsuka E., Ikehara M., Beauchemin N., Nicoghosian K., Cedergren R. The in vivo stability, maturation and aminoacylation of anticodon-substituted Escherichia coli initiator methionine tRNAs. Eur J Biochem. 1987 Jul 15;166(2):325–332. doi: 10.1111/j.1432-1033.1987.tb13518.x. [DOI] [PubMed] [Google Scholar]
  14. Grosjean H., Droogmans L., Giégé R., Uhlenbeck O. C. Guanosine modifications in runoff transcripts of synthetic transfer RNA-Phe genes microinjected into Xenopus oocytes. Biochim Biophys Acta. 1990 Aug 27;1050(1-3):267–273. doi: 10.1016/0167-4781(90)90179-6. [DOI] [PubMed] [Google Scholar]
  15. Grosjean H., Edqvist J., Stråby K. B., Giegé R. Enzymatic formation of modified nucleosides in tRNA: dependence on tRNA architecture. J Mol Biol. 1996 Jan 12;255(1):67–85. doi: 10.1006/jmbi.1996.0007. [DOI] [PubMed] [Google Scholar]
  16. Grosjean H., Sprinzl M., Steinberg S. Posttranscriptionally modified nucleosides in transfer RNA: their locations and frequencies. Biochimie. 1995;77(1-2):139–141. doi: 10.1016/0300-9084(96)88117-x. [DOI] [PubMed] [Google Scholar]
  17. Harada F., Matsubara M., Kato N. Stable tRNA precursors in HeLa cells. Nucleic Acids Res. 1984 Dec 21;12(24):9263–9269. doi: 10.1093/nar/12.24.9263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Haumont E., Droogmans L., Grosjean H. Enzymatic formation of queuosine and of glycosyl queuosine in yeast tRNAs microinjected into Xenopus laevis oocytes. The effect of the anticodon loop sequence. Eur J Biochem. 1987 Oct 1;168(1):219–225. doi: 10.1111/j.1432-1033.1987.tb13408.x. [DOI] [PubMed] [Google Scholar]
  19. Haumont E., Fournier M., de Henau S., Grosjean H. Enzymatic conversion of adenosine to inosine in the wobble position of yeast tRNAAsp: the dependence on the anticodon sequence. Nucleic Acids Res. 1984 Mar 26;12(6):2705–2715. doi: 10.1093/nar/12.6.2705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Keith G., Glasser A. L., Desgrès J., Kuo K. C., Gehrke C. W. Identification and structural characterization of O-beta-ribosyl-(1"----2')-adenosine-5"-phosphate in yeast methionine initiator tRNA. Nucleic Acids Res. 1990 Oct 25;18(20):5989–5993. doi: 10.1093/nar/18.20.5989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Keith G. Mobilities of modified ribonucleotides on two-dimensional cellulose thin-layer chromatography. Biochimie. 1995;77(1-2):142–144. doi: 10.1016/0300-9084(96)88118-1. [DOI] [PubMed] [Google Scholar]
  22. Kiesewetter S., Ott G., Sprinzl M. The role of modified purine 64 in initiator/elongator discrimination of tRNA(iMet) from yeast and wheat germ. Nucleic Acids Res. 1990 Aug 25;18(16):4677–4682. doi: 10.1093/nar/18.16.4677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Koski R. A., Clarkson S. G. Synthesis and maturation of Xenopus laevis methionine tRNA gene transcripts in homologous cell-free extracts. J Biol Chem. 1982 Apr 25;257(8):4514–4521. [PubMed] [Google Scholar]
  24. Kunkel T. A., Bebenek K., McClary J. Efficient site-directed mutagenesis using uracil-containing DNA. Methods Enzymol. 1991;204:125–139. doi: 10.1016/0076-6879(91)04008-c. [DOI] [PubMed] [Google Scholar]
  25. Körner A., Söll D. N-(purin-6-ylcarbamoyl)threonine: biosynthesis in vitro in transfer RNA by an enzyme purified from Escherichia coli. FEBS Lett. 1974 Mar 1;39(3):301–306. doi: 10.1016/0014-5793(74)80135-3. [DOI] [PubMed] [Google Scholar]
  26. Limbach P. A., Crain P. F., McCloskey J. A. Summary: the modified nucleosides of RNA. Nucleic Acids Res. 1994 Jun 25;22(12):2183–2196. doi: 10.1093/nar/22.12.2183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Major F., Gautheret D., Cedergren R. Reproducing the three-dimensional structure of a tRNA molecule from structural constraints. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9408–9412. doi: 10.1073/pnas.90.20.9408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Motorin Y., Bec G., Tewari R., Grosjean H. Transfer RNA recognition by the Escherichia coli delta2-isopentenyl-pyrophosphate:tRNA delta2-isopentenyl transferase: dependence on the anticodon arm structure. RNA. 1997 Jul;3(7):721–733. [PMC free article] [PubMed] [Google Scholar]
  29. Murgola E. J., Prather N. E., Pagel F. T., Mims B. H., Hijazi K. A. Missense and nonsense suppressors derived from a glycine tRNA by nucleotide insertion and deletion in vivo. Mol Gen Genet. 1984;193(1):76–81. doi: 10.1007/BF00327417. [DOI] [PubMed] [Google Scholar]
  30. Peng H. B. Xenopus laevis: Practical uses in cell and molecular biology. Solutions and protocols. Methods Cell Biol. 1991;36:657–662. [PubMed] [Google Scholar]
  31. Perreault J. P., Pon R. T., Jiang M. Y., Usman N., Pika J., Ogilvie K. K., Cedergren R. The synthesis and functional evaluation of RNA and DNA polymers having the sequence of Escherichia coli tRNA(fMet). Eur J Biochem. 1989 Dec 8;186(1-2):87–93. doi: 10.1111/j.1432-1033.1989.tb15181.x. [DOI] [PubMed] [Google Scholar]
  32. Powers D. M., Peterkofsky A. Biosynthesis and specific labeling of N-(purin-6-ylcarbamoyl)threonine of Escherichia coli transfer RNA. Biochem Biophys Res Commun. 1972 Jan 31;46(2):831–838. doi: 10.1016/s0006-291x(72)80216-x. [DOI] [PubMed] [Google Scholar]
  33. Roberts J. W., Carbon J. Nucleotide sequence studies of normal and genetically altered glycine transfer ribonucleic acids from Escherichia coli. J Biol Chem. 1975 Jul 25;250(14):5530–5541. [PubMed] [Google Scholar]
  34. Schweisguth D. C., Moore P. B. On the conformation of the anticodon loops of initiator and elongator methionine tRNAs. J Mol Biol. 1997 Apr 4;267(3):505–519. doi: 10.1006/jmbi.1996.0903. [DOI] [PubMed] [Google Scholar]
  35. Senger B., Aphasizhev R., Walter P., Fasiolo F. The presence of a D-stem but not a T-stem is essential for triggering aminoacylation upon anticodon binding in yeast methionine tRNA. J Mol Biol. 1995 May 26;249(1):45–58. doi: 10.1006/jmbi.1995.0279. [DOI] [PubMed] [Google Scholar]
  36. Senger B., Despons L., Walter P., Fasiolo F. The anticodon triplet is not sufficient to confer methionine acceptance to a transfer RNA. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10768–10771. doi: 10.1073/pnas.89.22.10768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Senger B., Fasiolo F. Yeast tRNA(Met) recognition by methionyl-tRNA synthetase requires determinants from the primary, secondary and tertiary structure: a review. Biochimie. 1996;78(7):597–604. doi: 10.1016/s0300-9084(96)80006-x. [DOI] [PubMed] [Google Scholar]
  38. Simsek M., RajBhandary U. L. The primary structure of yeast initiator transfer ribonucleic acid. Biochem Biophys Res Commun. 1972 Oct 17;49(2):508–515. doi: 10.1016/0006-291x(72)90440-8. [DOI] [PubMed] [Google Scholar]
  39. Sprinzl M., Steegborn C., Hübel F., Steinberg S. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 1996 Jan 1;24(1):68–72. doi: 10.1093/nar/24.1.68. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Steinberg S., Cedergren R. A correlation between N2-dimethylguanosine presence and alternate tRNA conformers. RNA. 1995 Nov;1(9):886–891. [PMC free article] [PubMed] [Google Scholar]
  41. Steinberg S., Cedergren R. Structural compensation in atypical mitochondrial tRNAs. Nat Struct Biol. 1994 Aug;1(8):507–510. doi: 10.1038/nsb0894-507. [DOI] [PubMed] [Google Scholar]
  42. Steinberg S., Gautheret D., Cedergren R. Fitting the structurally diverse animal mitochondrial tRNAs(Ser) to common three-dimensional constraints. J Mol Biol. 1994 Mar 4;236(4):982–989. doi: 10.1016/0022-2836(94)90004-3. [DOI] [PubMed] [Google Scholar]
  43. Szweykowska-Kulinska Z., Senger B., Keith G., Fasiolo F., Grosjean H. Intron-dependent formation of pseudouridines in the anticodon of Saccharomyces cerevisiae minor tRNA(Ile). EMBO J. 1994 Oct 3;13(19):4636–4644. doi: 10.1002/j.1460-2075.1994.tb06786.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tsang T. H., Buck M., Ames B. N. Sequence specificity of tRNA-modifying enzymes. An analysis of 258 tRNA sequences. Biochim Biophys Acta. 1983 Nov 17;741(2):180–196. doi: 10.1016/0167-4781(83)90058-1. [DOI] [PubMed] [Google Scholar]
  45. Watanabe Y., Kawai G., Yokogawa T., Hayashi N., Kumazawa Y., Ueda T., Nishikawa K., Hirao I., Miura K., Watanabe K. Higher-order structure of bovine mitochondrial tRNA(SerUGA): chemical modification and computer modeling. Nucleic Acids Res. 1994 Dec 11;22(24):5378–5384. doi: 10.1093/nar/22.24.5378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wegnez M., Mazabraud A., Denis H., Pétrissant G., Boisnard M. Biochemical research on oogenesis. Nucleotide sequence of initiator tRNA from oocytes and from somatic cells of Xenopus laevis. Eur J Biochem. 1975 Dec 1;60(1):295–302. doi: 10.1111/j.1432-1033.1975.tb21003.x. [DOI] [PubMed] [Google Scholar]
  47. Weissenbach J., Grosjean H. Effect of threonylcarbamoyl modification (t6A) in yeast tRNA Arg III on codon-anticodon and anticodon-anticodon interactions. A thermodynamic and kinetic evaluation. Eur J Biochem. 1981 May;116(1):207–213. doi: 10.1111/j.1432-1033.1981.tb05320.x. [DOI] [PubMed] [Google Scholar]
  48. Wolstenholme D. R., Macfarlane J. L., Okimoto R., Clary D. O., Wahleithner J. A. Bizarre tRNAs inferred from DNA sequences of mitochondrial genomes of nematode worms. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1324–1328. doi: 10.1073/pnas.84.5.1324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Yarus M. Translational efficiency of transfer RNA's: uses of an extended anticodon. Science. 1982 Nov 12;218(4573):646–652. doi: 10.1126/science.6753149. [DOI] [PubMed] [Google Scholar]
  50. Zeevi M., Daniel V. Aminoacylation and nucleoside modification of in vitro synthesised transfer RNA. Nature. 1976 Mar 4;260(5546):72–74. doi: 10.1038/260072a0. [DOI] [PubMed] [Google Scholar]
  51. de Bruijn M. H., Klug A. A model for the tertiary structure of mammalian mitochondrial transfer RNAs lacking the entire 'dihydrouridine' loop and stem. EMBO J. 1983;2(8):1309–1321. doi: 10.1002/j.1460-2075.1983.tb01586.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. el-Mabrouk N., Lisacek F. Very fast identification of RNA motifs in genomic DNA. Application to tRNA search in the yeast genome. J Mol Biol. 1996 Nov 22;264(1):46–55. doi: 10.1006/jmbi.1996.0622. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES