Skip to main content
RNA logoLink to RNA
. 1998 Apr;4(4):418–429.

Specific RNA self-cleavage in coconut cadang cadang viroid: potential for a role in rolling circle replication.

Y H Liu 1, R H Symons 1
PMCID: PMC1369628  PMID: 9630248

Abstract

The rolling circle replication of the small, single-stranded viroid RNAs requires a specific processing reaction to produce monomeric RNAs that are ligated into the final circular form. For avocado sunblotch viroid, peach latent mosaic viroid, and chrysanthemum chlorotic mottle viroid, the hammerhead self-cleavage reaction is considered to provide this processing reaction. We have searched for a similar type of reaction in the 246-nt coconut cadang cadang viroid, the smallest viroid of the 24-member potato spindle tuber viroid (PSTV) group. RNA transcripts prepared from the cloned central or C domain of this viroid self-cleaved specifically after denaturation with methylmercuric hydroxide followed by incubation in the presence of spermidine but in the absence of added magnesium ions. The unique cleavage site was located in the bottom strand of the C domain within a potential hairpin structure that is conserved within members of all three subgroups of the PSTV group of viroids.

Full Text

The Full Text of this article is available as a PDF (280.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailey J. M., Davidson N. Methylmercury as a reversible denaturing agent for agarose gel electrophoresis. Anal Biochem. 1976 Jan;70(1):75–85. doi: 10.1016/s0003-2697(76)80049-8. [DOI] [PubMed] [Google Scholar]
  2. Baumstark T., Riesner D. Only one of four possible secondary structures of the central conserved region of potato spindle tuber viroid is a substrate for processing in a potato nuclear extract. Nucleic Acids Res. 1995 Nov 11;23(21):4246–4254. doi: 10.1093/nar/23.21.4246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Branch A. D., Benenfeld B. J., Baroudy B. M., Wells F. V., Gerin J. L., Robertson H. D. An ultraviolet-sensitive RNA structural element in a viroid-like domain of the hepatitis delta virus. Science. 1989 Feb 3;243(4891):649–652. doi: 10.1126/science.2492676. [DOI] [PubMed] [Google Scholar]
  4. Branch A. D., Benenfeld B. J., Robertson H. D. Ultraviolet light-induced crosslinking reveals a unique region of local tertiary structure in potato spindle tuber viroid and HeLa 5S RNA. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6590–6594. doi: 10.1073/pnas.82.19.6590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Branch A. D., Robertson H. D. A replication cycle for viroids and other small infectious RNA's. Science. 1984 Feb 3;223(4635):450–455. doi: 10.1126/science.6197756. [DOI] [PubMed] [Google Scholar]
  6. Butcher S. E., Burke J. M. A photo-cross-linkable tertiary structure motif found in functionally distinct RNA molecules is essential for catalytic function of the hairpin ribozyme. Biochemistry. 1994 Feb 1;33(4):992–999. doi: 10.1021/bi00170a018. [DOI] [PubMed] [Google Scholar]
  7. Daròs J. A., Marcos J. F., Hernández C., Flores R. Replication of avocado sunblotch viroid: evidence for a symmetric pathway with two rolling circles and hammerhead ribozyme processing. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12813–12817. doi: 10.1073/pnas.91.26.12813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Forster A. C., Davies C., Hutchins C. J., Symons R. H. Characterization of self-cleavage of viroid and virusoid RNAs. Methods Enzymol. 1990;181:583–607. doi: 10.1016/0076-6879(90)81153-l. [DOI] [PubMed] [Google Scholar]
  9. Forster A. C., Davies C., Sheldon C. C., Jeffries A. C., Symons R. H. Self-cleaving viroid and newt RNAs may only be active as dimers. Nature. 1988 Jul 21;334(6179):265–267. doi: 10.1038/334265a0. [DOI] [PubMed] [Google Scholar]
  10. Forster A. C., Jeffries A. C., Sheldon C. C., Symons R. H. Structural and ionic requirements for self-cleavage of virusoid RNAs and trans self-cleavage of viroid RNA. Cold Spring Harb Symp Quant Biol. 1987;52:249–259. doi: 10.1101/sqb.1987.052.01.030. [DOI] [PubMed] [Google Scholar]
  11. Forster A. C., Symons R. H. Self-cleavage of plus and minus RNAs of a virusoid and a structural model for the active sites. Cell. 1987 Apr 24;49(2):211–220. doi: 10.1016/0092-8674(87)90562-9. [DOI] [PubMed] [Google Scholar]
  12. Forster A. C., Symons R. H. Self-cleavage of virusoid RNA is performed by the proposed 55-nucleotide active site. Cell. 1987 Jul 3;50(1):9–16. doi: 10.1016/0092-8674(87)90657-x. [DOI] [PubMed] [Google Scholar]
  13. Gruenwedel D. W., Davidson N. Complexing and denaturation of DNA by methylmercuric hydroxide. I. Spectrophotometric studies. J Mol Biol. 1966 Oct 28;21(1):129–144. doi: 10.1016/0022-2836(66)90084-2. [DOI] [PubMed] [Google Scholar]
  14. Gurevich V. V., Pokrovskaya I. D., Obukhova T. A., Zozulya S. A. Preparative in vitro mRNA synthesis using SP6 and T7 RNA polymerases. Anal Biochem. 1991 Jun;195(2):207–213. doi: 10.1016/0003-2697(91)90318-n. [DOI] [PubMed] [Google Scholar]
  15. Hernández C., Flores R. Plus and minus RNAs of peach latent mosaic viroid self-cleave in vitro via hammerhead structures. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3711–3715. doi: 10.1073/pnas.89.9.3711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hutchins C. J., Rathjen P. D., Forster A. C., Symons R. H. Self-cleavage of plus and minus RNA transcripts of avocado sunblotch viroid. Nucleic Acids Res. 1986 May 12;14(9):3627–3640. doi: 10.1093/nar/14.9.3627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jeng K. S., Daniel A., Lai M. M. A pseudoknot ribozyme structure is active in vivo and required for hepatitis delta virus RNA replication. J Virol. 1996 Apr;70(4):2403–2410. doi: 10.1128/jvi.70.4.2403-2410.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Keese P., Symons R. H. Domains in viroids: evidence of intermolecular RNA rearrangements and their contribution to viroid evolution. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4582–4586. doi: 10.1073/pnas.82.14.4582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Koltunow A. M., Rezaian M. A. A scheme for viroid classification. Intervirology. 1989;30(4):194–201. doi: 10.1159/000150093. [DOI] [PubMed] [Google Scholar]
  20. Martínez-Soriano J. P., Galindo-Alonso J., Maroon C. J., Yucel I., Smith D. R., Diener T. O. Mexican papita viroid: putative ancestor of crop viroids. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9397–9401. doi: 10.1073/pnas.93.18.9397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mühlbach H. P., Sänger H. L. Viroid replication is inhibited by alpha-amanitin. Nature. 1979 Mar 8;278(5700):185–188. doi: 10.1038/278185a0. [DOI] [PubMed] [Google Scholar]
  22. Nakaya A., Yamamoto K., Yonezawa A. RNA secondary structure prediction using highly parallel computers. Comput Appl Biosci. 1995 Dec;11(6):685–692. doi: 10.1093/bioinformatics/11.6.685. [DOI] [PubMed] [Google Scholar]
  23. Navarro B., Flores R. Chrysanthemum chlorotic mottle viroid: unusual structural properties of a subgroup of self-cleaving viroids with hammerhead ribozymes. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11262–11267. doi: 10.1073/pnas.94.21.11262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Perrotta A. T., Been M. D. The self-cleaving domain from the genomic RNA of hepatitis delta virus: sequence requirements and the effects of denaturant. Nucleic Acids Res. 1990 Dec 11;18(23):6821–6827. doi: 10.1093/nar/18.23.6821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rakowski A. G., Symons R. H. Infectivity of linear monomeric transcripts of citrus exocortis viroid: terminal sequence requirements for processing. Virology. 1994 Sep;203(2):328–335. doi: 10.1006/viro.1994.1491. [DOI] [PubMed] [Google Scholar]
  26. Schmidt S., Beigelman L., Karpeisky A., Usman N., Sorensen U. S., Gait M. J. Base and sugar requirements for RNA cleavage of essential nucleoside residues in internal loop B of the hairpin ribozyme: implications for secondary structure. Nucleic Acids Res. 1996 Feb 15;24(4):573–581. doi: 10.1093/nar/24.4.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Scott W. G., Klug A. Ribozymes: structure and mechanism in RNA catalysis. Trends Biochem Sci. 1996 Jun;21(6):220–224. [PubMed] [Google Scholar]
  28. Sheldon C. C., Symons R. H. Is hammerhead self-cleavage involved in the replication of a virusoid in vivo? Virology. 1993 Jun;194(2):463–474. doi: 10.1006/viro.1993.1285. [DOI] [PubMed] [Google Scholar]
  29. Spieker R. L., Marinkovic S., Sänger H. L. A new sequence variant of Coleus blumei viroid 3 from the Coleus blumei cultivar 'Fairway Ruby'. Arch Virol. 1996;141(8):1377–1386. doi: 10.1007/BF01718241. [DOI] [PubMed] [Google Scholar]
  30. Steger G., Baumstark T., Mörchen M., Tabler M., Tsagris M., Sänger H. L., Riesner D. Structural requirements for viroid processing by RNase T1. J Mol Biol. 1992 Oct 5;227(3):719–737. doi: 10.1016/0022-2836(92)90220-e. [DOI] [PubMed] [Google Scholar]
  31. Symons R. H. Plant pathogenic RNAs and RNA catalysis. Nucleic Acids Res. 1997 Jul 15;25(14):2683–2689. doi: 10.1093/nar/25.14.2683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Symons R. H. Small catalytic RNAs. Annu Rev Biochem. 1992;61:641–671. doi: 10.1146/annurev.bi.61.070192.003233. [DOI] [PubMed] [Google Scholar]
  33. Tsagris M., Tabler M., Mühlbach H. P., Sänger H. L. Linear oligomeric potato spindle tuber viroid (PSTV) RNAs are accurately processed in vitro to the monomeric circular viroid proper when incubated with a nuclear extract from healthy potato cells. EMBO J. 1987 Aug;6(8):2173–2183. doi: 10.1002/j.1460-2075.1987.tb02488.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Visvader J. E., Forster A. C., Symons R. H. Infectivity and in vitro mutagenesis of monomeric cDNA clones of citrus exocortis viroid indicates the site of processing of viroid precursors. Nucleic Acids Res. 1985 Aug 26;13(16):5843–5856. doi: 10.1093/nar/13.16.5843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wu H. N., Lin Y. J., Lin F. P., Makino S., Chang M. F., Lai M. M. Human hepatitis delta virus RNA subfragments contain an autocleavage activity. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1831–1835. doi: 10.1073/pnas.86.6.1831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Zuker M. On finding all suboptimal foldings of an RNA molecule. Science. 1989 Apr 7;244(4900):48–52. doi: 10.1126/science.2468181. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES