Skip to main content
RNA logoLink to RNA
. 1998 Apr;4(4):471–478.

Isoleucine:RNA sites with associated coding sequences.

I Majerfeld 1, M Yarus 1
PMCID: PMC1369632  PMID: 9630252

Abstract

An RNA family that binds isoleucine with Kd = 200-500 microM was repetitively isolated from a ribonucleotide transcript pool containing 50 randomized positions. The RNA site is specific, discriminating against branched side chains of different size (valine--one methylene smaller than isoleucine) by at least 1.3 kcal/mol and against the shape (linear) of norleucine by 0.6 kcal/mol. The binding site was localized by sequence comparison, by synthesis of mutant and truncated active derivatives, and by chemical modification-interference. The binding site is small, no more than 10-12 nt, containing an asymmetric internal loop (6 over 2 nt) that includes the isoleucine codon AUU and a sequence of four G's, two of which are involved in G-U and G-C base pairs. Areas of U/G concentration like these may signal a hydrophobic RNA site.

Full Text

The Full Text of this article is available as a PDF (339.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chen L., Frankel A. D. A peptide interaction in the major groove of RNA resembles protein interactions in the minor groove of DNA. Proc Natl Acad Sci U S A. 1995 May 23;92(11):5077–5081. doi: 10.1073/pnas.92.11.5077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ciesiolka J., Gorski J., Yarus M. Selection of an RNA domain that binds Zn2+. RNA. 1995 Jul;1(5):538–550. [PMC free article] [PubMed] [Google Scholar]
  3. Ciesiolka J., Illangasekare M., Majerfeld I., Nickles T., Welch M., Yarus M., Zinnen S. Affinity selection-amplification from randomized ribooligonucleotide pools. Methods Enzymol. 1996;267:315–335. doi: 10.1016/s0076-6879(96)67021-9. [DOI] [PubMed] [Google Scholar]
  4. Ciesiołka J., Lorenz S., Erdmann V. A. Structural analysis of three prokaryotic 5S rRNA species and selected 5S rRNA--ribosomal-protein complexes by means of Pb(II)-induced hydrolysis. Eur J Biochem. 1992 Mar 1;204(2):575–581. doi: 10.1111/j.1432-1033.1992.tb16670.x. [DOI] [PubMed] [Google Scholar]
  5. Connell G. J., Illangesekare M., Yarus M. Three small ribooligonucleotides with specific arginine sites. Biochemistry. 1993 Jun 1;32(21):5497–5502. doi: 10.1021/bi00072a002. [DOI] [PubMed] [Google Scholar]
  6. Connell G. J., Yarus M. RNAs with dual specificity and dual RNAs with similar specificity. Science. 1994 May 20;264(5162):1137–1141. doi: 10.1126/science.7513905. [DOI] [PubMed] [Google Scholar]
  7. Geiger A., Burgstaller P., von der Eltz H., Roeder A., Famulok M. RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity. Nucleic Acids Res. 1996 Mar 15;24(6):1029–1036. doi: 10.1093/nar/24.6.1029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jaeger J. A., Turner D. H., Zuker M. Improved predictions of secondary structures for RNA. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7706–7710. doi: 10.1073/pnas.86.20.7706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Krol A., Carbon P. A guide for probing native small nuclear RNA and ribonucleoprotein structures. Methods Enzymol. 1989;180:212–227. doi: 10.1016/0076-6879(89)80103-x. [DOI] [PubMed] [Google Scholar]
  10. Li Y., Sen D. A catalytic DNA for porphyrin metallation. Nat Struct Biol. 1996 Sep;3(9):743–747. doi: 10.1038/nsb0996-743. [DOI] [PubMed] [Google Scholar]
  11. Majerfeld I., Yarus M. An RNA pocket for an aliphatic hydrophobe. Nat Struct Biol. 1994 May;1(5):287–292. doi: 10.1038/nsb0594-287. [DOI] [PubMed] [Google Scholar]
  12. Puglisi J. D., Chen L., Blanchard S., Frankel A. D. Solution structure of a bovine immunodeficiency virus Tat-TAR peptide-RNA complex. Science. 1995 Nov 17;270(5239):1200–1203. doi: 10.1126/science.270.5239.1200. [DOI] [PubMed] [Google Scholar]
  13. Tao J., Frankel A. D. Arginine-binding RNAs resembling TAR identified by in vitro selection. Biochemistry. 1996 Feb 20;35(7):2229–2238. doi: 10.1021/bi951844b. [DOI] [PubMed] [Google Scholar]
  14. Woese C. R., Dugre D. H., Dugre S. A., Kondo M., Saxinger W. C. On the fundamental nature and evolution of the genetic code. Cold Spring Harb Symp Quant Biol. 1966;31:723–736. doi: 10.1101/sqb.1966.031.01.093. [DOI] [PubMed] [Google Scholar]
  15. Yarus M. A specific amino acid binding site composed of RNA. Science. 1988 Jun 24;240(4860):1751–1758. doi: 10.1126/science.3381099. [DOI] [PubMed] [Google Scholar]
  16. Ye X., Kumar R. A., Patel D. J. Molecular recognition in the bovine immunodeficiency virus Tat peptide-TAR RNA complex. Chem Biol. 1995 Dec;2(12):827–840. doi: 10.1016/1074-5521(95)90089-6. [DOI] [PubMed] [Google Scholar]
  17. la Cour T. F., Nyborg J., Thirup S., Clark B. F. Structural details of the binding of guanosine diphosphate to elongation factor Tu from E. coli as studied by X-ray crystallography. EMBO J. 1985 Sep;4(9):2385–2388. doi: 10.1002/j.1460-2075.1985.tb03943.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES